# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from functools import partial import numpy as np from jax._src import core from jax._src import dtypes from jax._src import traceback_util traceback_util.register_exclusion(__file__) ShapedArray = core.ShapedArray AbstractToken = core.AbstractToken abstract_token = core.abstract_token canonicalize_shape = core.canonicalize_shape numpy_scalar_types: set[type] = { # pylint: disable=g-bare-generic dtypes.int4, np.int8, np.int16, np.int32, np.int64, dtypes.uint4, np.uint8, np.uint16, np.uint32, np.uint64, np.complex64, np.complex128, np.bool_, np.longlong, np.intc, } | {np.dtype(dt).type for dt in dtypes._float_types} if dtypes.int2 is not None: assert dtypes.uint2 is not None numpy_scalar_types.add(dtypes.int2) numpy_scalar_types.add(dtypes.uint2) array_types: set[type] = {np.ndarray} | numpy_scalar_types # pylint: disable=g-bare-generic def masked_array_error(*args, **kwargs): raise ValueError( "numpy masked arrays are not supported as direct inputs to JAX functions." " Use arr.filled() to convert the value to a standard numpy array.") core.pytype_aval_mappings[np.ma.MaskedArray] = masked_array_error def _make_shaped_array_for_numpy_array(x: np.ndarray) -> ShapedArray: dtype = x.dtype dtypes.check_valid_dtype(dtype) return ShapedArray(x.shape, dtypes.canonicalize_dtype(dtype), sharding=None) core.pytype_aval_mappings[np.ndarray] = _make_shaped_array_for_numpy_array def _make_shaped_array_for_numpy_scalar(x: np.generic) -> ShapedArray: dtype = np.dtype(x) dtypes.check_valid_dtype(dtype) shape = np.shape(x) return ShapedArray(shape, dtypes.canonicalize_dtype(dtype), sharding=None) for t in numpy_scalar_types: core.pytype_aval_mappings[t] = _make_shaped_array_for_numpy_scalar core.literalable_types.update(array_types) def _make_abstract_python_scalar(typ, val): # Note: all python scalar types are weak except bool, because bool only # comes in a single width. return ShapedArray((), dtypes._scalar_type_to_dtype(typ, val), weak_type=typ is not bool, sharding=None) for t in dtypes.python_scalar_dtypes: core.pytype_aval_mappings[t] = partial(_make_abstract_python_scalar, t) core.literalable_types.update(dtypes.python_scalar_dtypes.keys())