# Copyright 2021 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from collections.abc import Callable from typing import Any import functools import operator from jax._src import api from jax._src import core from jax._src import custom_api_util from jax._src import linear_util as lu from jax._src import source_info_util from jax._src import traceback_util from jax._src import tree_util from jax._src import util from jax._src import api_util from jax._src.interpreters import ad from jax._src.interpreters import batching from jax._src.interpreters.batching import not_mapped from jax._src.interpreters import mlir from jax._src.interpreters import partial_eval as pe from jax._src.interpreters import xla from jax._src.tree_util import (tree_flatten, tree_map, tree_structure, tree_unflatten, treedef_tuple) source_info_util.register_exclusion(__file__) traceback_util.register_exclusion(__file__) map, unsafe_map = util.safe_map, map zip, unsafe_zip = util.safe_zip, zip @custom_api_util.register_custom_decorator_type class custom_vmap: """Customize the vmap behavior of a JAX-transformable function. This decorator is used to customize the behavior of a JAX function under the :func:`jax.vmap` transformation. A ``custom_vmap``-decorated function will mostly (see below for caveats) have the same behavior as the underlying function, except when batched using :py:func:`jax.vmap`. When batched, the rule defined using :py:func:`~jax.custom_batching.custom_vmap.def_vmap` will be used. For example: >>> @jax.custom_batching.custom_vmap ... def f(x, y): ... return x + y ... >>> @f.def_vmap ... def f_vmap_rule(axis_size, in_batched, xs, ys): ... assert all(in_batched) ... assert xs.shape[0] == axis_size ... assert ys.shape[0] == axis_size ... out_batched = True ... return xs * ys, out_batched ... >>> xs = jnp.arange(3) >>> ys = jnp.arange(1, 4) >>> jax.vmap(f)(xs, ys) # prints xs * ys instead of xs + ys Array([0, 2, 6], dtype=int32) Of note, ``custom_vmap`` functions do not support reverse-mode autodiff. To customize both vmap and reverse-mode autodiff, combine ``custom_vmap`` with :py:class:`jax.custom_vjp`. For example: >>> @jax.custom_vjp ... @jax.custom_batching.custom_vmap ... def f(x, y): ... return jnp.sin(x) * y ... >>> @f.def_vmap ... def f_vmap_rule(axis_size, in_batched, xs, ys): ... return jnp.cos(xs) * ys, True ... >>> def f_fwd(x, y): ... return f(x, y), (jnp.cos(x), jnp.sin(x), y) ... >>> def f_bwd(res, g): ... cos_x, sin_x, y = res ... return (cos_x * g * y, sin_x * g) ... >>> f.defvjp(f_fwd, f_bwd) >>> jax.vmap(f)(jnp.zeros(3), jnp.ones(3)) Array([1., 1., 1.], dtype=float32) >>> jax.grad(f)(jnp.zeros(()), jnp.ones(())) Array(1., dtype=float32) Note that the :py:class:`jax.custom_vjp` must be on the outside, wrapping the ``custom_vmap``-decorated function. """ fun: Callable[..., Any] vmap_rule: Callable[..., tuple[Any, Any]] | None def __init__(self, fun: Callable[..., Any]): functools.update_wrapper(self, fun) self.fun = fun self.vmap_rule = None __getattr__ = custom_api_util.forward_attr def def_vmap( self, vmap_rule: Callable[..., tuple[Any, Any]], ) -> Callable[..., tuple[Any, Any]]: """Define the vmap rule for this custom_vmap function. Args: vmap_rule: A function that implements the vmap rule. This function should accept the following arguments: (1) an integer ``axis_size`` as its first argument, (2) a pytree of booleans with the same structure as the inputs to the function, specifying whether each argument is batched, and (3) the batched arguments. It should return a tuple of the batched output and a pytree of booleans with the same structure as the output, specifying whether each output element is batched. See the documentation for :py:func:`jax.custom_batching.custom_vmap` for some examples. Returns: This method passes the rule through, returning ``vmap_rule`` unchanged. """ self.vmap_rule = vmap_rule return vmap_rule @traceback_util.api_boundary def __call__(self, *args, **kwargs): debug_fun = api_util.debug_info("custom_vmap fun", self.fun, args, kwargs) try: args = api_util.resolve_kwargs(self.fun, args, kwargs) except TypeError as e: raise TypeError( "The input arguments to the custom_vmap-decorated function " f"{debug_fun.func_name} could not be resolved to positional-only " f"arguments. Binding failed with the error:\n{e}" ) from e if not self.vmap_rule: raise AttributeError( f"No batching rule defined for custom_vmap function {debug_fun.func_name} " "using def_vmap.") args_flat, in_tree = tree_flatten(args) flat_fun, out_tree = api_util.flatten_fun_nokwargs( lu.wrap_init(self.fun, debug_info=debug_fun), in_tree) in_avals = [core.get_aval(x) for x in args_flat] jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(flat_fun, in_avals) closed_call = core.ClosedJaxpr(pe.convert_constvars_jaxpr(jaxpr), ()) in_tree = treedef_tuple((tree_structure(consts), in_tree)) assert self.vmap_rule is not None debug_rule = api_util.debug_info("custom_vmap rule", self.vmap_rule, (0, args, args), {}) out_flat = custom_vmap_p.bind(*consts, *args_flat, call=closed_call, rule=ClosedRule(self.vmap_rule, debug_rule), in_tree=in_tree, out_tree=out_tree()) return tree_unflatten(out_tree(), out_flat) ### utils # Define a class, instead of making a function closing over `rule`, so # that we can override __str__ class ClosedRule: def __init__(self, rule: Callable, debug: core.DebugInfo): functools.update_wrapper(self, rule) self.rule = rule self.debug = debug def __call__(self, axis_size, all_in_batched, *all_args): _, args = all_args consts_batched, in_batched = all_in_batched assert not any(tree_util.tree_leaves(consts_batched)), consts_batched return call_rule(self.rule, axis_size, in_batched, args) def __str__(self): return str(self.rule) def ensure_list(xs): return xs if type(xs) is list else list(xs) def rule_name(rule): return getattr(rule, '__name__', '') def call_rule(rule, axis_size, in_batched, args): return rule(axis_size, ensure_list(in_batched), *args) def check_vmap_rule_trees(rule, original_out_tree, out_tree, out_batched_tree): if out_tree != out_batched_tree: raise ValueError( 'structure of output value and output batching specification returned ' f'by custom vmap rule ({rule_name(rule)}) do not match.\n' f'Output values: {out_tree}\n' f'Batching spec: {out_batched_tree}') if out_tree != original_out_tree: raise ValueError( f'structure of output returned by custom vmap rule ({rule_name(rule)}) ' 'does not match that of original custom-vmapped function.\n' f'Original output: {original_out_tree}\n' f'Rule output: {out_tree}') # Like batching.bdim_at_front, but doesn't broadcast if not mapped def maybe_bdim_at_front(x, bdim): if bdim is not_mapped: return x else: return util.moveaxis(x, bdim, 0) # Like batching.batch except (a) not curried and (b) returns inferred output # axes instead of accepting and matching a given spec of output axes. Assumes # `f` is pytree-flattened def vmap_unrestricted(f: lu.WrappedFun, *args, in_axes, axis_name, axis_size): axis_data = batching.AxisData(axis_name, axis_size, None, None) tag = core.TraceTag() f, out_axes = batching.batch_subtrace(f, tag, axis_data, in_axes) outs = f.call_wrapped(*args) return outs, out_axes() ### custom_vmap_p rules def custom_vmap_impl(*args, call, rule, in_tree, out_tree): del rule, in_tree, out_tree return core.jaxpr_as_fun(call)(*args) def custom_vmap_batching(args_flat, dims, *, call, rule, in_tree, out_tree): del call axis_size, = {x.shape[d] for x, d in zip(args_flat, dims) if d is not None} args_flat = map(maybe_bdim_at_front, args_flat, dims) flat_in_batched = [d is not not_mapped for d in dims] args = tree_unflatten(in_tree, args_flat) in_batched = tree_unflatten(in_tree, flat_in_batched) out, out_batched = call_rule(rule, axis_size, in_batched, args) flat_outs, tree1 = tree_flatten(out) flat_out_batched, tree2 = tree_flatten(out_batched) check_vmap_rule_trees(rule, out_tree, tree1, tree2) flat_out_dims = [0 if b else not_mapped for b in flat_out_batched] return flat_outs, flat_out_dims def custom_vmap_abstract_eval(*in_avals, call, **_): return call.out_avals def custom_vmap_jvp(primals, tangents, *, call: core.ClosedJaxpr, rule: ClosedRule, in_tree: tree_util.PyTreeDef, out_tree: tree_util.PyTreeDef): def jvp_of_rule_rule(axis_size: int, in_batched, primals, tangents): in_batched_ps, in_batched_ts = in_batched mutually_batched = tree_map(operator.and_, in_batched_ps, in_batched_ts) extra_batched_ps = tree_map(lambda pb, tb: 0 if pb and not tb else None, in_batched_ps, in_batched_ts) extra_batched_ts = tree_map(lambda pb, tb: 0 if tb and not pb else None, in_batched_ps, in_batched_ts) out_mutually_batched = lu.Store() flat_ps_ts, tree_ps_ts = tree_flatten((primals, tangents)) flat_extra_batched_ps_ts, tree_ps_ts2 = tree_flatten( (extra_batched_ps, extra_batched_ts), is_leaf=lambda x: x is None) # TODO(frostig): assert these also equal: # treedef_tuple((in_tree, in_tree)) # once https://github.com/jax-ml/jax/issues/9066 is fixed assert tree_ps_ts == tree_ps_ts2 del tree_ps_ts2 def to_jvp(*primals): out, out_batched = call_rule(rule, axis_size, mutually_batched, primals) check_vmap_rule_trees( rule, out_tree, tree_structure(out), tree_structure(out_batched)) out_mutually_batched.store(out_batched) return out api_util.save_wrapped_fun_sourceinfo(to_jvp, call.jaxpr.debug_info) def to_vmap_over_extra_batched_dims(primals, tangents): return api.jvp(to_jvp, primals, tangents) to_vmap_over_extra_batched_dims_flat, out_tree2 = api_util.flatten_fun_nokwargs( lu.wrap_init(to_vmap_over_extra_batched_dims, # TODO(necula): fix the debug_info calling convention debug_info=call.jaxpr.debug_info), tree_ps_ts) flat_out_ps_ts, flat_out_axes = vmap_unrestricted( to_vmap_over_extra_batched_dims_flat, *flat_ps_ts, in_axes=flat_extra_batched_ps_ts, axis_name=core.no_axis_name, axis_size=axis_size) n, ragged = divmod(len(flat_out_ps_ts), 2) assert not ragged flat_out_ps, flat_out_ts = flat_out_ps_ts[:n], flat_out_ps_ts[n:] flat_out_axes_p, flat_out_axes_t = flat_out_axes[:n], flat_out_axes[n:] flat_out_ps = map(maybe_bdim_at_front, flat_out_ps, flat_out_axes_p) flat_out_extra_batched_ps = [d is not not_mapped for d in flat_out_axes_p] flat_out_ts = map(maybe_bdim_at_front, flat_out_ts, flat_out_axes_t) flat_out_extra_batched_ts = [d is not not_mapped for d in flat_out_axes_t] out_ps, out_ts = tree_unflatten( out_tree2(), [*flat_out_ps, *flat_out_ts]) out_extra_batched_ps, out_extra_batched_ts = tree_unflatten( out_tree2(), [*flat_out_extra_batched_ps, *flat_out_extra_batched_ts]) out_batched_ps = tree_map( operator.or_, out_mutually_batched.val, out_extra_batched_ps) out_batched_ts = tree_map( operator.or_, out_mutually_batched.val, out_extra_batched_ts) return (out_ps, out_ts), (out_batched_ps, out_batched_ts) tangents = map(ad.instantiate_zeros, tangents) jvp_call, _ = ad.jvp_jaxpr(call, [True] * len(primals), True) jvp_in_tree = treedef_tuple((in_tree, in_tree)) jvp_out_tree = treedef_tuple((out_tree, out_tree)) outs = custom_vmap_p.bind( *primals, *tangents, call=jvp_call, rule=jvp_of_rule_rule, in_tree=jvp_in_tree, out_tree=jvp_out_tree) assert len(outs) % 2 == 0, len(outs) out_primals, out_tangents = util.split_list(outs, [len(outs) // 2]) return out_primals, out_tangents custom_vmap_p = core.Primitive('custom_vmap_call') custom_vmap_p.multiple_results = True custom_vmap_p.def_impl(custom_vmap_impl) custom_vmap_p.def_abstract_eval(custom_vmap_abstract_eval) batching.primitive_batchers[custom_vmap_p] = custom_vmap_batching ad.primitive_jvps[custom_vmap_p] = custom_vmap_jvp xla.register_initial_style_primitive(custom_vmap_p) mlir.register_lowering(custom_vmap_p, mlir.lower_fun( custom_vmap_impl, multiple_results=True)) # -- custom vmap applications def tree_split(mask, tree): lhs = tree_map(lambda l, x: x if l else None, mask, tree) rhs = tree_map(lambda l, x: None if l else x, mask, tree) return lhs, rhs def tree_merge(mask, lhs_tree, rhs_tree): return tree_map(lambda l, x_l, x_r: x_l if l else x_r, mask, lhs_tree, rhs_tree) def sequential_vmap(f): """A special case of ``custom_vmap`` that uses a loop. A function decorated with ``sequential_vmap`` will be called sequentially within a loop when batched. This is useful for functions that don't natively support batch dimensions. For example: >>> @jax.custom_batching.sequential_vmap ... def f(x): ... jax.debug.print("{}", x) ... return x + 1 ... >>> jax.vmap(f)(jnp.arange(3)) 0 1 2 Array([1, 2, 3], dtype=int32) Where the print statements demonstrate that this :py:func:`~jax.vmap` is being generated using a loop. See the documentation for :py:class:`~jax.custom_batching.custom_vmap` for more details. """ from jax._src.lax import control_flow # pytype: disable=import-error f = custom_vmap(f) @f.def_vmap def rule(axis_size, in_batched, *args): del axis_size def to_map(mapped_args): args = tree_merge(in_batched, mapped_args, bcast_args) return f(*args) mapped_args, bcast_args = tree_split(in_batched, list(args)) out = control_flow.map(to_map, mapped_args) out_batched = tree_map(lambda _: True, out) return out, out_batched return f