# Copyright 2021 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Sparse test utilities.""" from __future__ import annotations from collections.abc import Callable, Iterable, Iterator, Sequence import functools import itertools import math from typing import Any, NamedTuple import jax from jax import lax from jax import tree_util from jax._src import test_util as jtu from jax._src.lax.lax import DotDimensionNumbers from jax._src.typing import DTypeLike from jax.experimental import sparse import jax.numpy as jnp from jax._src.util import safe_zip, split_list import numpy as np MATMUL_TOL = { np.float32: 1e-5, np.float64: 1e-10, np.complex64: 1e-5, np.complex128: 1e-10, } def is_sparse(x): return isinstance(x, sparse.JAXSparse) class BatchedDotGeneralProperties(NamedTuple): lhs_shape: tuple[int, ...] rhs_shape: tuple[int, ...] n_batch: int n_dense: int dimension_numbers: DotDimensionNumbers class SparseLayout(NamedTuple): n_batch: int n_dense: int n_sparse: int class SparseTestCase(jtu.JaxTestCase): def assertSparseArraysEquivalent(self, x, y, *, check_dtypes=True, atol=None, rtol=None, canonicalize_dtypes=True, err_msg=''): x_bufs, x_tree = tree_util.tree_flatten(x) y_bufs, y_tree = tree_util.tree_flatten(y) self.assertEqual(x_tree, y_tree) self.assertAllClose(x_bufs, y_bufs, check_dtypes=check_dtypes, atol=atol, rtol=rtol, canonicalize_dtypes=canonicalize_dtypes, err_msg=err_msg) def _CheckAgainstDense(self, dense_op, sparse_op, args_maker, check_jit=True, check_dtypes=True, tol=None, atol=None, rtol=None, canonicalize_dtypes=True): """Check an operation against a dense equivalent""" sparse_args = args_maker() dense_args = tree_util.tree_map(sparse.todense, sparse_args, is_leaf=is_sparse) expected = dense_op(*dense_args) sparse_ans = sparse_op(*sparse_args) actual = tree_util.tree_map(sparse.todense, sparse_ans, is_leaf=is_sparse) self.assertAllClose(expected, actual, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol, canonicalize_dtypes=canonicalize_dtypes) if check_jit: sparse_ans_jit = jax.jit(sparse_op)(*sparse_args) self.assertSparseArraysEquivalent(sparse_ans, sparse_ans_jit, atol=atol or tol, rtol=rtol or tol) def _CheckGradsSparse(self, dense_fun, sparse_fun, args_maker, *, argnums=None, modes=('fwd', 'rev'), atol=None, rtol=None): assert all(mode in ['fwd', 'rev'] for mode in modes) args = args_maker() args_flat, tree = tree_util.tree_flatten(args) num_bufs = [len(tree_util.tree_flatten(arg)[0]) for arg in args] argnums_flat = np.cumsum([0, *num_bufs[:-1]]).tolist() if argnums is not None: argnums_flat = [argnums_flat[n] for n in argnums] def dense_fun_flat(*args_flat): args = tree_util.tree_unflatten(tree, args_flat) args_dense = tree_util.tree_map(sparse.todense, args, is_leaf=is_sparse) return dense_fun(*args_dense) def sparse_fun_flat(*args_flat): out = sparse_fun(*tree_util.tree_unflatten(tree, args_flat)) return tree_util.tree_map(sparse.todense, out, is_leaf=is_sparse) if 'rev' in modes: result_de = jax.jacrev(dense_fun_flat, argnums=argnums_flat)(*args_flat) result_sp = jax.jacrev(sparse_fun_flat, argnums=argnums_flat)(*args_flat) self.assertAllClose(result_de, result_sp, atol=atol, rtol=rtol) if 'fwd' in modes: result_de = jax.jacfwd(dense_fun_flat, argnums=argnums_flat)(*args_flat) result_sp = jax.jacfwd(sparse_fun_flat, argnums=argnums_flat)(*args_flat) self.assertAllClose(result_de, result_sp, atol=atol, rtol=rtol) def _random_bdims(self, *args): rng = self.rng() return [rng.randint(0, arg + 1) for arg in args] def _CheckBatchingSparse(self, dense_fun, sparse_fun, args_maker, *, batch_size=3, bdims=None, check_jit=False, check_dtypes=True, tol=None, atol=None, rtol=None, canonicalize_dtypes=True): if bdims is None: bdims = self._random_bdims(*(arg.n_batch if is_sparse(arg) else arg.ndim for arg in args_maker())) def concat(args, bdim): return sparse.sparsify(functools.partial(lax.concatenate, dimension=bdim))(args) def expand(arg, bdim): return sparse.sparsify(functools.partial(lax.expand_dims, dimensions=[bdim]))(arg) def batched_args_maker(): args = list(zip(*(args_maker() for _ in range(batch_size)))) return [arg[0] if bdim is None else concat([expand(x, bdim) for x in arg], bdim) for arg, bdim in safe_zip(args, bdims)] self._CheckAgainstDense(jax.vmap(dense_fun, bdims), jax.vmap(sparse_fun, bdims), batched_args_maker, check_dtypes=check_dtypes, tol=tol, atol=atol, rtol=rtol, check_jit=check_jit, canonicalize_dtypes=canonicalize_dtypes) def _rand_sparse(shape: Sequence[int], dtype: DTypeLike, *, rng: np.random.RandomState, rand_method: Callable[..., Any], nse: int | float, n_batch: int, n_dense: int, sparse_format: str) -> sparse.BCOO | sparse.BCSR: if sparse_format not in ['bcoo', 'bcsr']: raise ValueError(f"Sparse format {sparse_format} not supported.") n_sparse = len(shape) - n_batch - n_dense if n_sparse < 0 or n_batch < 0 or n_dense < 0: raise ValueError(f"Invalid parameters: {shape=} {n_batch=} {n_sparse=}") if sparse_format == 'bcsr' and n_sparse != 2: raise ValueError("bcsr array must have 2 sparse dimensions; " f"{n_sparse} is given.") batch_shape, sparse_shape, dense_shape = split_list(shape, [n_batch, n_sparse]) if 0 <= nse < 1: nse = int(np.ceil(nse * np.prod(sparse_shape))) nse_int = int(nse) data_rng = rand_method(rng) data_shape = (*batch_shape, nse_int, *dense_shape) data = jnp.array(data_rng(data_shape, dtype)) int32 = np.dtype('int32') if sparse_format == 'bcoo': index_shape = (*batch_shape, nse_int, n_sparse) indices = jnp.array( rng.randint(0, sparse_shape, size=index_shape, dtype=int32)) return sparse.BCOO((data, indices), shape=shape) else: index_shape = (*batch_shape, nse_int) indptr_shape = (*batch_shape, sparse_shape[0] + 1) indices = jnp.array( rng.randint(0, sparse_shape[1], size=index_shape, dtype=int32)) indptr = jnp.sort( rng.randint(0, nse_int + 1, size=indptr_shape, dtype=int32), axis=-1) indptr = indptr.at[..., 0].set(0) return sparse.BCSR((data, indices, indptr), shape=shape) def rand_bcoo(rng: np.random.RandomState, rand_method: Callable[..., Any]=jtu.rand_default, nse: int | float=0.5, n_batch: int=0, n_dense: int=0): """Generates a random BCOO array.""" return functools.partial(_rand_sparse, rng=rng, rand_method=rand_method, nse=nse, n_batch=n_batch, n_dense=n_dense, sparse_format='bcoo') def rand_bcsr(rng: np.random.RandomState, rand_method: Callable[..., Any]=jtu.rand_default, nse: int | float=0.5, n_batch: int=0, n_dense: int=0): """Generates a random BCSR array.""" return functools.partial(_rand_sparse, rng=rng, rand_method=rand_method, nse=nse, n_batch=n_batch, n_dense=n_dense, sparse_format='bcsr') def iter_subsets(s: Sequence) -> Iterable[tuple]: """Return an iterator over all subsets of a sequence s""" return itertools.chain.from_iterable( itertools.combinations(s, n) for n in range(len(s) + 1) ) def iter_sparse_layouts( shape: Sequence[int], min_n_batch=0 ) -> Iterator[SparseLayout]: for n_batch in range(min_n_batch, len(shape) + 1): for n_dense in range(len(shape) + 1 - n_batch): n_sparse = len(shape) - n_batch - n_dense yield SparseLayout(n_batch=n_batch, n_sparse=n_sparse, n_dense=n_dense) def iter_bcsr_layouts( shape: Sequence[int], min_n_batch=0 ) -> Iterator[SparseLayout]: n_sparse = 2 for n_batch in range(min_n_batch, len(shape) - 1): n_dense = len(shape) - n_sparse - n_batch yield SparseLayout(n_batch=n_batch, n_sparse=n_sparse, n_dense=n_dense) def rand_sparse(rng, nse=0.5, post=lambda x: x, rand_method=jtu.rand_default): def _rand_sparse(shape, dtype, nse=nse): rand = rand_method(rng) size = math.prod(shape) if 0 <= nse < 1: nse = nse * size nse = min(size, int(nse)) M = rand(shape, dtype) indices = rng.choice(size, size - nse, replace=False) M.flat[indices] = 0 return post(M) return _rand_sparse