# Copyright 2020-2021 The MediaPipe Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MediaPipe Pose.""" import enum from typing import NamedTuple import numpy as np # The following imports are needed because python pb2 silently discards # unknown protobuf fields. # pylint: disable=unused-import from mediapipe.calculators.core import constant_side_packet_calculator_pb2 from mediapipe.calculators.core import gate_calculator_pb2 from mediapipe.calculators.core import split_vector_calculator_pb2 from mediapipe.calculators.image import warp_affine_calculator_pb2 from mediapipe.calculators.tensor import image_to_tensor_calculator_pb2 from mediapipe.calculators.tensor import inference_calculator_pb2 from mediapipe.calculators.tensor import tensors_to_classification_calculator_pb2 from mediapipe.calculators.tensor import tensors_to_detections_calculator_pb2 from mediapipe.calculators.tensor import tensors_to_landmarks_calculator_pb2 from mediapipe.calculators.tensor import tensors_to_segmentation_calculator_pb2 from mediapipe.calculators.tflite import ssd_anchors_calculator_pb2 from mediapipe.calculators.util import detections_to_rects_calculator_pb2 from mediapipe.calculators.util import landmarks_smoothing_calculator_pb2 from mediapipe.calculators.util import local_file_contents_calculator_pb2 from mediapipe.calculators.util import logic_calculator_pb2 from mediapipe.calculators.util import non_max_suppression_calculator_pb2 from mediapipe.calculators.util import rect_transformation_calculator_pb2 from mediapipe.calculators.util import thresholding_calculator_pb2 from mediapipe.calculators.util import visibility_smoothing_calculator_pb2 from mediapipe.framework.tool import switch_container_pb2 # pylint: enable=unused-import from mediapipe.python.solution_base import SolutionBase from mediapipe.python.solutions import download_utils # pylint: disable=unused-import from mediapipe.python.solutions.pose_connections import POSE_CONNECTIONS # pylint: enable=unused-import class PoseLandmark(enum.IntEnum): """The 33 pose landmarks.""" NOSE = 0 LEFT_EYE_INNER = 1 LEFT_EYE = 2 LEFT_EYE_OUTER = 3 RIGHT_EYE_INNER = 4 RIGHT_EYE = 5 RIGHT_EYE_OUTER = 6 LEFT_EAR = 7 RIGHT_EAR = 8 MOUTH_LEFT = 9 MOUTH_RIGHT = 10 LEFT_SHOULDER = 11 RIGHT_SHOULDER = 12 LEFT_ELBOW = 13 RIGHT_ELBOW = 14 LEFT_WRIST = 15 RIGHT_WRIST = 16 LEFT_PINKY = 17 RIGHT_PINKY = 18 LEFT_INDEX = 19 RIGHT_INDEX = 20 LEFT_THUMB = 21 RIGHT_THUMB = 22 LEFT_HIP = 23 RIGHT_HIP = 24 LEFT_KNEE = 25 RIGHT_KNEE = 26 LEFT_ANKLE = 27 RIGHT_ANKLE = 28 LEFT_HEEL = 29 RIGHT_HEEL = 30 LEFT_FOOT_INDEX = 31 RIGHT_FOOT_INDEX = 32 _BINARYPB_FILE_PATH = 'mediapipe/modules/pose_landmark/pose_landmark_cpu.binarypb' def _download_oss_pose_landmark_model(model_complexity): """Downloads the pose landmark lite/heavy model from the MediaPipe Github repo if it doesn't exist in the package.""" if model_complexity == 0: download_utils.download_oss_model( 'mediapipe/modules/pose_landmark/pose_landmark_lite.tflite') elif model_complexity == 2: download_utils.download_oss_model( 'mediapipe/modules/pose_landmark/pose_landmark_heavy.tflite') class Pose(SolutionBase): """MediaPipe Pose. MediaPipe Pose processes an RGB image and returns pose landmarks on the most prominent person detected. Please refer to https://solutions.mediapipe.dev/pose#python-solution-api for usage examples. """ def __init__(self, static_image_mode=False, model_complexity=1, smooth_landmarks=True, enable_segmentation=False, smooth_segmentation=True, min_detection_confidence=0.5, min_tracking_confidence=0.5): """Initializes a MediaPipe Pose object. Args: static_image_mode: Whether to treat the input images as a batch of static and possibly unrelated images, or a video stream. See details in https://solutions.mediapipe.dev/pose#static_image_mode. model_complexity: Complexity of the pose landmark model: 0, 1 or 2. See details in https://solutions.mediapipe.dev/pose#model_complexity. smooth_landmarks: Whether to filter landmarks across different input images to reduce jitter. See details in https://solutions.mediapipe.dev/pose#smooth_landmarks. enable_segmentation: Whether to predict segmentation mask. See details in https://solutions.mediapipe.dev/pose#enable_segmentation. smooth_segmentation: Whether to filter segmentation across different input images to reduce jitter. See details in https://solutions.mediapipe.dev/pose#smooth_segmentation. min_detection_confidence: Minimum confidence value ([0.0, 1.0]) for person detection to be considered successful. See details in https://solutions.mediapipe.dev/pose#min_detection_confidence. min_tracking_confidence: Minimum confidence value ([0.0, 1.0]) for the pose landmarks to be considered tracked successfully. See details in https://solutions.mediapipe.dev/pose#min_tracking_confidence. """ _download_oss_pose_landmark_model(model_complexity) super().__init__( binary_graph_path=_BINARYPB_FILE_PATH, side_inputs={ 'model_complexity': model_complexity, 'smooth_landmarks': smooth_landmarks and not static_image_mode, 'enable_segmentation': enable_segmentation, 'smooth_segmentation': smooth_segmentation and not static_image_mode, 'use_prev_landmarks': not static_image_mode, }, calculator_params={ 'posedetectioncpu__TensorsToDetectionsCalculator.min_score_thresh': min_detection_confidence, 'poselandmarkbyroicpu__tensorstoposelandmarksandsegmentation__ThresholdingCalculator.threshold': min_tracking_confidence, }, outputs=['pose_landmarks', 'pose_world_landmarks', 'segmentation_mask']) def process(self, image: np.ndarray) -> NamedTuple: """Processes an RGB image and returns the pose landmarks on the most prominent person detected. Args: image: An RGB image represented as a numpy ndarray. Raises: RuntimeError: If the underlying graph throws any error. ValueError: If the input image is not three channel RGB. Returns: A NamedTuple with fields describing the landmarks on the most prominate person detected: 1) "pose_landmarks" field that contains the pose landmarks. 2) "pose_world_landmarks" field that contains the pose landmarks in real-world 3D coordinates that are in meters with the origin at the center between hips. 3) "segmentation_mask" field that contains the segmentation mask if "enable_segmentation" is set to true. """ results = super().process(input_data={'image': image}) if results.pose_landmarks: # pytype: disable=attribute-error for landmark in results.pose_landmarks.landmark: # pytype: disable=attribute-error landmark.ClearField('presence') if results.pose_world_landmarks: # pytype: disable=attribute-error for landmark in results.pose_world_landmarks.landmark: # pytype: disable=attribute-error landmark.ClearField('presence') return results