287 lines
10 KiB
Python
287 lines
10 KiB
Python
__all__: list[str] = []
|
|
|
|
import cv2
|
|
import cv2.typing
|
|
import typing as _typing
|
|
|
|
|
|
# Enumerations
|
|
SR_FIXED: int
|
|
SR_CROSS: int
|
|
SupportRegionType = int
|
|
"""One of [SR_FIXED, SR_CROSS]"""
|
|
|
|
ST_STANDART: int
|
|
ST_BILINEAR: int
|
|
SolverType = int
|
|
"""One of [ST_STANDART, ST_BILINEAR]"""
|
|
|
|
INTERP_GEO: int
|
|
INTERP_EPIC: int
|
|
INTERP_RIC: int
|
|
InterpolationType = int
|
|
"""One of [INTERP_GEO, INTERP_EPIC, INTERP_RIC]"""
|
|
|
|
GPC_DESCRIPTOR_DCT: int
|
|
GPC_DESCRIPTOR_WHT: int
|
|
GPCDescType = int
|
|
"""One of [GPC_DESCRIPTOR_DCT, GPC_DESCRIPTOR_WHT]"""
|
|
|
|
|
|
|
|
# Classes
|
|
class DualTVL1OpticalFlow(cv2.DenseOpticalFlow):
|
|
# Functions
|
|
def getTau(self) -> float: ...
|
|
|
|
def setTau(self, val: float) -> None: ...
|
|
|
|
def getLambda(self) -> float: ...
|
|
|
|
def setLambda(self, val: float) -> None: ...
|
|
|
|
def getTheta(self) -> float: ...
|
|
|
|
def setTheta(self, val: float) -> None: ...
|
|
|
|
def getGamma(self) -> float: ...
|
|
|
|
def setGamma(self, val: float) -> None: ...
|
|
|
|
def getScalesNumber(self) -> int: ...
|
|
|
|
def setScalesNumber(self, val: int) -> None: ...
|
|
|
|
def getWarpingsNumber(self) -> int: ...
|
|
|
|
def setWarpingsNumber(self, val: int) -> None: ...
|
|
|
|
def getEpsilon(self) -> float: ...
|
|
|
|
def setEpsilon(self, val: float) -> None: ...
|
|
|
|
def getInnerIterations(self) -> int: ...
|
|
|
|
def setInnerIterations(self, val: int) -> None: ...
|
|
|
|
def getOuterIterations(self) -> int: ...
|
|
|
|
def setOuterIterations(self, val: int) -> None: ...
|
|
|
|
def getUseInitialFlow(self) -> bool: ...
|
|
|
|
def setUseInitialFlow(self, val: bool) -> None: ...
|
|
|
|
def getScaleStep(self) -> float: ...
|
|
|
|
def setScaleStep(self, val: float) -> None: ...
|
|
|
|
def getMedianFiltering(self) -> int: ...
|
|
|
|
def setMedianFiltering(self, val: int) -> None: ...
|
|
|
|
@classmethod
|
|
def create(cls, tau: float = ..., lambda_: float = ..., theta: float = ..., nscales: int = ..., warps: int = ..., epsilon: float = ..., innnerIterations: int = ..., outerIterations: int = ..., scaleStep: float = ..., gamma: float = ..., medianFiltering: int = ..., useInitialFlow: bool = ...) -> DualTVL1OpticalFlow: ...
|
|
|
|
|
|
class PCAPrior:
|
|
...
|
|
|
|
class OpticalFlowPCAFlow(cv2.DenseOpticalFlow):
|
|
...
|
|
|
|
class RLOFOpticalFlowParameter:
|
|
# Functions
|
|
def setUseMEstimator(self, val: bool) -> None: ...
|
|
|
|
def setSolverType(self, val: SolverType) -> None: ...
|
|
|
|
def getSolverType(self) -> SolverType: ...
|
|
|
|
def setSupportRegionType(self, val: SupportRegionType) -> None: ...
|
|
|
|
def getSupportRegionType(self) -> SupportRegionType: ...
|
|
|
|
def setNormSigma0(self, val: float) -> None: ...
|
|
|
|
def getNormSigma0(self) -> float: ...
|
|
|
|
def setNormSigma1(self, val: float) -> None: ...
|
|
|
|
def getNormSigma1(self) -> float: ...
|
|
|
|
def setSmallWinSize(self, val: int) -> None: ...
|
|
|
|
def getSmallWinSize(self) -> int: ...
|
|
|
|
def setLargeWinSize(self, val: int) -> None: ...
|
|
|
|
def getLargeWinSize(self) -> int: ...
|
|
|
|
def setCrossSegmentationThreshold(self, val: int) -> None: ...
|
|
|
|
def getCrossSegmentationThreshold(self) -> int: ...
|
|
|
|
def setMaxLevel(self, val: int) -> None: ...
|
|
|
|
def getMaxLevel(self) -> int: ...
|
|
|
|
def setUseInitialFlow(self, val: bool) -> None: ...
|
|
|
|
def getUseInitialFlow(self) -> bool: ...
|
|
|
|
def setUseIlluminationModel(self, val: bool) -> None: ...
|
|
|
|
def getUseIlluminationModel(self) -> bool: ...
|
|
|
|
def setUseGlobalMotionPrior(self, val: bool) -> None: ...
|
|
|
|
def getUseGlobalMotionPrior(self) -> bool: ...
|
|
|
|
def setMaxIteration(self, val: int) -> None: ...
|
|
|
|
def getMaxIteration(self) -> int: ...
|
|
|
|
def setMinEigenValue(self, val: float) -> None: ...
|
|
|
|
def getMinEigenValue(self) -> float: ...
|
|
|
|
def setGlobalMotionRansacThreshold(self, val: float) -> None: ...
|
|
|
|
def getGlobalMotionRansacThreshold(self) -> float: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> RLOFOpticalFlowParameter: ...
|
|
|
|
|
|
class DenseRLOFOpticalFlow(cv2.DenseOpticalFlow):
|
|
# Functions
|
|
def setRLOFOpticalFlowParameter(self, val: RLOFOpticalFlowParameter) -> None: ...
|
|
|
|
def getRLOFOpticalFlowParameter(self) -> RLOFOpticalFlowParameter: ...
|
|
|
|
def setForwardBackward(self, val: float) -> None: ...
|
|
|
|
def getForwardBackward(self) -> float: ...
|
|
|
|
def getGridStep(self) -> cv2.typing.Size: ...
|
|
|
|
def setGridStep(self, val: cv2.typing.Size) -> None: ...
|
|
|
|
def setInterpolation(self, val: InterpolationType) -> None: ...
|
|
|
|
def getInterpolation(self) -> InterpolationType: ...
|
|
|
|
def getEPICK(self) -> int: ...
|
|
|
|
def setEPICK(self, val: int) -> None: ...
|
|
|
|
def getEPICSigma(self) -> float: ...
|
|
|
|
def setEPICSigma(self, val: float) -> None: ...
|
|
|
|
def getEPICLambda(self) -> float: ...
|
|
|
|
def setEPICLambda(self, val: float) -> None: ...
|
|
|
|
def getFgsLambda(self) -> float: ...
|
|
|
|
def setFgsLambda(self, val: float) -> None: ...
|
|
|
|
def getFgsSigma(self) -> float: ...
|
|
|
|
def setFgsSigma(self, val: float) -> None: ...
|
|
|
|
def setUsePostProc(self, val: bool) -> None: ...
|
|
|
|
def getUsePostProc(self) -> bool: ...
|
|
|
|
def setUseVariationalRefinement(self, val: bool) -> None: ...
|
|
|
|
def getUseVariationalRefinement(self) -> bool: ...
|
|
|
|
def setRICSPSize(self, val: int) -> None: ...
|
|
|
|
def getRICSPSize(self) -> int: ...
|
|
|
|
def setRICSLICType(self, val: int) -> None: ...
|
|
|
|
def getRICSLICType(self) -> int: ...
|
|
|
|
@classmethod
|
|
def create(cls, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> DenseRLOFOpticalFlow: ...
|
|
|
|
|
|
class SparseRLOFOpticalFlow(cv2.SparseOpticalFlow):
|
|
# Functions
|
|
def setRLOFOpticalFlowParameter(self, val: RLOFOpticalFlowParameter) -> None: ...
|
|
|
|
def getRLOFOpticalFlowParameter(self) -> RLOFOpticalFlowParameter: ...
|
|
|
|
def setForwardBackward(self, val: float) -> None: ...
|
|
|
|
def getForwardBackward(self) -> float: ...
|
|
|
|
@classmethod
|
|
def create(cls, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> SparseRLOFOpticalFlow: ...
|
|
|
|
|
|
class GPCPatchDescriptor:
|
|
...
|
|
|
|
class GPCPatchSample:
|
|
...
|
|
|
|
class GPCTrainingSamples:
|
|
...
|
|
|
|
class GPCTree(cv2.Algorithm):
|
|
...
|
|
|
|
class GPCDetails:
|
|
...
|
|
|
|
|
|
# Functions
|
|
@_typing.overload
|
|
def calcOpticalFlowDenseRLOF(I0: cv2.typing.MatLike, I1: cv2.typing.MatLike, flow: cv2.typing.MatLike, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def calcOpticalFlowDenseRLOF(I0: cv2.UMat, I1: cv2.UMat, flow: cv2.UMat, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def calcOpticalFlowSF(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, layers: int, averaging_block_size: int, max_flow: int, flow: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def calcOpticalFlowSF(from_: cv2.UMat, to: cv2.UMat, layers: int, averaging_block_size: int, max_flow: int, flow: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
@_typing.overload
|
|
def calcOpticalFlowSF(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, layers: int, averaging_block_size: int, max_flow: int, sigma_dist: float, sigma_color: float, postprocess_window: int, sigma_dist_fix: float, sigma_color_fix: float, occ_thr: float, upscale_averaging_radius: int, upscale_sigma_dist: float, upscale_sigma_color: float, speed_up_thr: float, flow: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def calcOpticalFlowSF(from_: cv2.UMat, to: cv2.UMat, layers: int, averaging_block_size: int, max_flow: int, sigma_dist: float, sigma_color: float, postprocess_window: int, sigma_dist_fix: float, sigma_color_fix: float, occ_thr: float, upscale_averaging_radius: int, upscale_sigma_dist: float, upscale_sigma_color: float, speed_up_thr: float, flow: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def calcOpticalFlowSparseRLOF(prevImg: cv2.typing.MatLike, nextImg: cv2.typing.MatLike, prevPts: cv2.typing.MatLike, nextPts: cv2.typing.MatLike, status: cv2.typing.MatLike | None = ..., err: cv2.typing.MatLike | None = ..., rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def calcOpticalFlowSparseRLOF(prevImg: cv2.UMat, nextImg: cv2.UMat, prevPts: cv2.UMat, nextPts: cv2.UMat, status: cv2.UMat | None = ..., err: cv2.UMat | None = ..., rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> tuple[cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
|
|
@_typing.overload
|
|
def calcOpticalFlowSparseToDense(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, flow: cv2.typing.MatLike | None = ..., grid_step: int = ..., k: int = ..., sigma: float = ..., use_post_proc: bool = ..., fgs_lambda: float = ..., fgs_sigma: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def calcOpticalFlowSparseToDense(from_: cv2.UMat, to: cv2.UMat, flow: cv2.UMat | None = ..., grid_step: int = ..., k: int = ..., sigma: float = ..., use_post_proc: bool = ..., fgs_lambda: float = ..., fgs_sigma: float = ...) -> cv2.UMat: ...
|
|
|
|
def createOptFlow_DeepFlow() -> cv2.DenseOpticalFlow: ...
|
|
|
|
def createOptFlow_DenseRLOF() -> cv2.DenseOpticalFlow: ...
|
|
|
|
def createOptFlow_DualTVL1() -> DualTVL1OpticalFlow: ...
|
|
|
|
def createOptFlow_Farneback() -> cv2.DenseOpticalFlow: ...
|
|
|
|
def createOptFlow_PCAFlow() -> cv2.DenseOpticalFlow: ...
|
|
|
|
def createOptFlow_SimpleFlow() -> cv2.DenseOpticalFlow: ...
|
|
|
|
def createOptFlow_SparseRLOF() -> cv2.SparseOpticalFlow: ...
|
|
|
|
def createOptFlow_SparseToDense() -> cv2.DenseOpticalFlow: ...
|
|
|
|
|