2025-08-11 12:24:21 +08:00

287 lines
10 KiB
Python

__all__: list[str] = []
import cv2
import cv2.typing
import typing as _typing
# Enumerations
SR_FIXED: int
SR_CROSS: int
SupportRegionType = int
"""One of [SR_FIXED, SR_CROSS]"""
ST_STANDART: int
ST_BILINEAR: int
SolverType = int
"""One of [ST_STANDART, ST_BILINEAR]"""
INTERP_GEO: int
INTERP_EPIC: int
INTERP_RIC: int
InterpolationType = int
"""One of [INTERP_GEO, INTERP_EPIC, INTERP_RIC]"""
GPC_DESCRIPTOR_DCT: int
GPC_DESCRIPTOR_WHT: int
GPCDescType = int
"""One of [GPC_DESCRIPTOR_DCT, GPC_DESCRIPTOR_WHT]"""
# Classes
class DualTVL1OpticalFlow(cv2.DenseOpticalFlow):
# Functions
def getTau(self) -> float: ...
def setTau(self, val: float) -> None: ...
def getLambda(self) -> float: ...
def setLambda(self, val: float) -> None: ...
def getTheta(self) -> float: ...
def setTheta(self, val: float) -> None: ...
def getGamma(self) -> float: ...
def setGamma(self, val: float) -> None: ...
def getScalesNumber(self) -> int: ...
def setScalesNumber(self, val: int) -> None: ...
def getWarpingsNumber(self) -> int: ...
def setWarpingsNumber(self, val: int) -> None: ...
def getEpsilon(self) -> float: ...
def setEpsilon(self, val: float) -> None: ...
def getInnerIterations(self) -> int: ...
def setInnerIterations(self, val: int) -> None: ...
def getOuterIterations(self) -> int: ...
def setOuterIterations(self, val: int) -> None: ...
def getUseInitialFlow(self) -> bool: ...
def setUseInitialFlow(self, val: bool) -> None: ...
def getScaleStep(self) -> float: ...
def setScaleStep(self, val: float) -> None: ...
def getMedianFiltering(self) -> int: ...
def setMedianFiltering(self, val: int) -> None: ...
@classmethod
def create(cls, tau: float = ..., lambda_: float = ..., theta: float = ..., nscales: int = ..., warps: int = ..., epsilon: float = ..., innnerIterations: int = ..., outerIterations: int = ..., scaleStep: float = ..., gamma: float = ..., medianFiltering: int = ..., useInitialFlow: bool = ...) -> DualTVL1OpticalFlow: ...
class PCAPrior:
...
class OpticalFlowPCAFlow(cv2.DenseOpticalFlow):
...
class RLOFOpticalFlowParameter:
# Functions
def setUseMEstimator(self, val: bool) -> None: ...
def setSolverType(self, val: SolverType) -> None: ...
def getSolverType(self) -> SolverType: ...
def setSupportRegionType(self, val: SupportRegionType) -> None: ...
def getSupportRegionType(self) -> SupportRegionType: ...
def setNormSigma0(self, val: float) -> None: ...
def getNormSigma0(self) -> float: ...
def setNormSigma1(self, val: float) -> None: ...
def getNormSigma1(self) -> float: ...
def setSmallWinSize(self, val: int) -> None: ...
def getSmallWinSize(self) -> int: ...
def setLargeWinSize(self, val: int) -> None: ...
def getLargeWinSize(self) -> int: ...
def setCrossSegmentationThreshold(self, val: int) -> None: ...
def getCrossSegmentationThreshold(self) -> int: ...
def setMaxLevel(self, val: int) -> None: ...
def getMaxLevel(self) -> int: ...
def setUseInitialFlow(self, val: bool) -> None: ...
def getUseInitialFlow(self) -> bool: ...
def setUseIlluminationModel(self, val: bool) -> None: ...
def getUseIlluminationModel(self) -> bool: ...
def setUseGlobalMotionPrior(self, val: bool) -> None: ...
def getUseGlobalMotionPrior(self) -> bool: ...
def setMaxIteration(self, val: int) -> None: ...
def getMaxIteration(self) -> int: ...
def setMinEigenValue(self, val: float) -> None: ...
def getMinEigenValue(self) -> float: ...
def setGlobalMotionRansacThreshold(self, val: float) -> None: ...
def getGlobalMotionRansacThreshold(self) -> float: ...
@classmethod
def create(cls) -> RLOFOpticalFlowParameter: ...
class DenseRLOFOpticalFlow(cv2.DenseOpticalFlow):
# Functions
def setRLOFOpticalFlowParameter(self, val: RLOFOpticalFlowParameter) -> None: ...
def getRLOFOpticalFlowParameter(self) -> RLOFOpticalFlowParameter: ...
def setForwardBackward(self, val: float) -> None: ...
def getForwardBackward(self) -> float: ...
def getGridStep(self) -> cv2.typing.Size: ...
def setGridStep(self, val: cv2.typing.Size) -> None: ...
def setInterpolation(self, val: InterpolationType) -> None: ...
def getInterpolation(self) -> InterpolationType: ...
def getEPICK(self) -> int: ...
def setEPICK(self, val: int) -> None: ...
def getEPICSigma(self) -> float: ...
def setEPICSigma(self, val: float) -> None: ...
def getEPICLambda(self) -> float: ...
def setEPICLambda(self, val: float) -> None: ...
def getFgsLambda(self) -> float: ...
def setFgsLambda(self, val: float) -> None: ...
def getFgsSigma(self) -> float: ...
def setFgsSigma(self, val: float) -> None: ...
def setUsePostProc(self, val: bool) -> None: ...
def getUsePostProc(self) -> bool: ...
def setUseVariationalRefinement(self, val: bool) -> None: ...
def getUseVariationalRefinement(self) -> bool: ...
def setRICSPSize(self, val: int) -> None: ...
def getRICSPSize(self) -> int: ...
def setRICSLICType(self, val: int) -> None: ...
def getRICSLICType(self) -> int: ...
@classmethod
def create(cls, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> DenseRLOFOpticalFlow: ...
class SparseRLOFOpticalFlow(cv2.SparseOpticalFlow):
# Functions
def setRLOFOpticalFlowParameter(self, val: RLOFOpticalFlowParameter) -> None: ...
def getRLOFOpticalFlowParameter(self) -> RLOFOpticalFlowParameter: ...
def setForwardBackward(self, val: float) -> None: ...
def getForwardBackward(self) -> float: ...
@classmethod
def create(cls, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> SparseRLOFOpticalFlow: ...
class GPCPatchDescriptor:
...
class GPCPatchSample:
...
class GPCTrainingSamples:
...
class GPCTree(cv2.Algorithm):
...
class GPCDetails:
...
# Functions
@_typing.overload
def calcOpticalFlowDenseRLOF(I0: cv2.typing.MatLike, I1: cv2.typing.MatLike, flow: cv2.typing.MatLike, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> cv2.typing.MatLike: ...
@_typing.overload
def calcOpticalFlowDenseRLOF(I0: cv2.UMat, I1: cv2.UMat, flow: cv2.UMat, rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ..., gridStep: cv2.typing.Size = ..., interp_type: InterpolationType = ..., epicK: int = ..., epicSigma: float = ..., epicLambda: float = ..., ricSPSize: int = ..., ricSLICType: int = ..., use_post_proc: bool = ..., fgsLambda: float = ..., fgsSigma: float = ..., use_variational_refinement: bool = ...) -> cv2.UMat: ...
@_typing.overload
def calcOpticalFlowSF(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, layers: int, averaging_block_size: int, max_flow: int, flow: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
@_typing.overload
def calcOpticalFlowSF(from_: cv2.UMat, to: cv2.UMat, layers: int, averaging_block_size: int, max_flow: int, flow: cv2.UMat | None = ...) -> cv2.UMat: ...
@_typing.overload
def calcOpticalFlowSF(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, layers: int, averaging_block_size: int, max_flow: int, sigma_dist: float, sigma_color: float, postprocess_window: int, sigma_dist_fix: float, sigma_color_fix: float, occ_thr: float, upscale_averaging_radius: int, upscale_sigma_dist: float, upscale_sigma_color: float, speed_up_thr: float, flow: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
@_typing.overload
def calcOpticalFlowSF(from_: cv2.UMat, to: cv2.UMat, layers: int, averaging_block_size: int, max_flow: int, sigma_dist: float, sigma_color: float, postprocess_window: int, sigma_dist_fix: float, sigma_color_fix: float, occ_thr: float, upscale_averaging_radius: int, upscale_sigma_dist: float, upscale_sigma_color: float, speed_up_thr: float, flow: cv2.UMat | None = ...) -> cv2.UMat: ...
@_typing.overload
def calcOpticalFlowSparseRLOF(prevImg: cv2.typing.MatLike, nextImg: cv2.typing.MatLike, prevPts: cv2.typing.MatLike, nextPts: cv2.typing.MatLike, status: cv2.typing.MatLike | None = ..., err: cv2.typing.MatLike | None = ..., rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
@_typing.overload
def calcOpticalFlowSparseRLOF(prevImg: cv2.UMat, nextImg: cv2.UMat, prevPts: cv2.UMat, nextPts: cv2.UMat, status: cv2.UMat | None = ..., err: cv2.UMat | None = ..., rlofParam: RLOFOpticalFlowParameter = ..., forwardBackwardThreshold: float = ...) -> tuple[cv2.UMat, cv2.UMat, cv2.UMat]: ...
@_typing.overload
def calcOpticalFlowSparseToDense(from_: cv2.typing.MatLike, to: cv2.typing.MatLike, flow: cv2.typing.MatLike | None = ..., grid_step: int = ..., k: int = ..., sigma: float = ..., use_post_proc: bool = ..., fgs_lambda: float = ..., fgs_sigma: float = ...) -> cv2.typing.MatLike: ...
@_typing.overload
def calcOpticalFlowSparseToDense(from_: cv2.UMat, to: cv2.UMat, flow: cv2.UMat | None = ..., grid_step: int = ..., k: int = ..., sigma: float = ..., use_post_proc: bool = ..., fgs_lambda: float = ..., fgs_sigma: float = ...) -> cv2.UMat: ...
def createOptFlow_DeepFlow() -> cv2.DenseOpticalFlow: ...
def createOptFlow_DenseRLOF() -> cv2.DenseOpticalFlow: ...
def createOptFlow_DualTVL1() -> DualTVL1OpticalFlow: ...
def createOptFlow_Farneback() -> cv2.DenseOpticalFlow: ...
def createOptFlow_PCAFlow() -> cv2.DenseOpticalFlow: ...
def createOptFlow_SimpleFlow() -> cv2.DenseOpticalFlow: ...
def createOptFlow_SparseRLOF() -> cv2.SparseOpticalFlow: ...
def createOptFlow_SparseToDense() -> cv2.DenseOpticalFlow: ...