747 lines
32 KiB
Python
747 lines
32 KiB
Python
__all__: list[str] = []
|
|
|
|
import cv2
|
|
import cv2.typing
|
|
import typing as _typing
|
|
|
|
|
|
from cv2.ximgproc import segmentation as segmentation
|
|
|
|
|
|
# Enumerations
|
|
THINNING_ZHANGSUEN: int
|
|
THINNING_GUOHALL: int
|
|
ThinningTypes = int
|
|
"""One of [THINNING_ZHANGSUEN, THINNING_GUOHALL]"""
|
|
|
|
BINARIZATION_NIBLACK: int
|
|
BINARIZATION_SAUVOLA: int
|
|
BINARIZATION_WOLF: int
|
|
BINARIZATION_NICK: int
|
|
LocalBinarizationMethods = int
|
|
"""One of [BINARIZATION_NIBLACK, BINARIZATION_SAUVOLA, BINARIZATION_WOLF, BINARIZATION_NICK]"""
|
|
|
|
DTF_NC: int
|
|
DTF_IC: int
|
|
DTF_RF: int
|
|
GUIDED_FILTER: int
|
|
AM_FILTER: int
|
|
EdgeAwareFiltersList = int
|
|
"""One of [DTF_NC, DTF_IC, DTF_RF, GUIDED_FILTER, AM_FILTER]"""
|
|
|
|
ARO_0_45: int
|
|
ARO_45_90: int
|
|
ARO_90_135: int
|
|
ARO_315_0: int
|
|
ARO_315_45: int
|
|
ARO_45_135: int
|
|
ARO_315_135: int
|
|
ARO_CTR_HOR: int
|
|
ARO_CTR_VER: int
|
|
AngleRangeOption = int
|
|
"""One of [ARO_0_45, ARO_45_90, ARO_90_135, ARO_315_0, ARO_315_45, ARO_45_135, ARO_315_135, ARO_CTR_HOR, ARO_CTR_VER]"""
|
|
|
|
FHT_MIN: int
|
|
FHT_MAX: int
|
|
FHT_ADD: int
|
|
FHT_AVE: int
|
|
HoughOp = int
|
|
"""One of [FHT_MIN, FHT_MAX, FHT_ADD, FHT_AVE]"""
|
|
|
|
HDO_RAW: int
|
|
HDO_DESKEW: int
|
|
HoughDeskewOption = int
|
|
"""One of [HDO_RAW, HDO_DESKEW]"""
|
|
|
|
SLIC: int
|
|
SLICO: int
|
|
MSLIC: int
|
|
SLICType = int
|
|
"""One of [SLIC, SLICO, MSLIC]"""
|
|
|
|
WMF_EXP: int
|
|
WMF_IV1: int
|
|
WMF_IV2: int
|
|
WMF_COS: int
|
|
WMF_JAC: int
|
|
WMF_OFF: int
|
|
WMFWeightType = int
|
|
"""One of [WMF_EXP, WMF_IV1, WMF_IV2, WMF_COS, WMF_JAC, WMF_OFF]"""
|
|
|
|
|
|
EdgeDrawing_PREWITT: int
|
|
EDGE_DRAWING_PREWITT: int
|
|
EdgeDrawing_SOBEL: int
|
|
EDGE_DRAWING_SOBEL: int
|
|
EdgeDrawing_SCHARR: int
|
|
EDGE_DRAWING_SCHARR: int
|
|
EdgeDrawing_LSD: int
|
|
EDGE_DRAWING_LSD: int
|
|
EdgeDrawing_GradientOperator = int
|
|
"""One of [EdgeDrawing_PREWITT, EDGE_DRAWING_PREWITT, EdgeDrawing_SOBEL, EDGE_DRAWING_SOBEL, EdgeDrawing_SCHARR, EDGE_DRAWING_SCHARR, EdgeDrawing_LSD, EDGE_DRAWING_LSD]"""
|
|
|
|
|
|
# Classes
|
|
class DisparityFilter(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def filter(self, disparity_map_left: cv2.typing.MatLike, left_view: cv2.typing.MatLike, filtered_disparity_map: cv2.typing.MatLike | None = ..., disparity_map_right: cv2.typing.MatLike | None = ..., ROI: cv2.typing.Rect = ..., right_view: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def filter(self, disparity_map_left: cv2.UMat, left_view: cv2.UMat, filtered_disparity_map: cv2.UMat | None = ..., disparity_map_right: cv2.UMat | None = ..., ROI: cv2.typing.Rect = ..., right_view: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class DisparityWLSFilter(DisparityFilter):
|
|
# Functions
|
|
def getLambda(self) -> float: ...
|
|
|
|
def setLambda(self, _lambda: float) -> None: ...
|
|
|
|
def getSigmaColor(self) -> float: ...
|
|
|
|
def setSigmaColor(self, _sigma_color: float) -> None: ...
|
|
|
|
def getLRCthresh(self) -> int: ...
|
|
|
|
def setLRCthresh(self, _LRC_thresh: int) -> None: ...
|
|
|
|
def getDepthDiscontinuityRadius(self) -> int: ...
|
|
|
|
def setDepthDiscontinuityRadius(self, _disc_radius: int) -> None: ...
|
|
|
|
def getConfidenceMap(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getROI(self) -> cv2.typing.Rect: ...
|
|
|
|
|
|
class EdgeDrawing(cv2.Algorithm):
|
|
# Classes
|
|
class Params:
|
|
PFmode: bool
|
|
EdgeDetectionOperator: int
|
|
GradientThresholdValue: int
|
|
AnchorThresholdValue: int
|
|
ScanInterval: int
|
|
MinPathLength: int
|
|
Sigma: float
|
|
SumFlag: bool
|
|
NFAValidation: bool
|
|
MinLineLength: int
|
|
MaxDistanceBetweenTwoLines: float
|
|
LineFitErrorThreshold: float
|
|
MaxErrorThreshold: float
|
|
|
|
# Functions
|
|
def __init__(self) -> None: ...
|
|
|
|
def read(self, fn: cv2.FileNode) -> None: ...
|
|
|
|
def write(self, fs: cv2.FileStorage) -> None: ...
|
|
|
|
|
|
|
|
# Functions
|
|
@_typing.overload
|
|
def detectEdges(self, src: cv2.typing.MatLike) -> None: ...
|
|
@_typing.overload
|
|
def detectEdges(self, src: cv2.UMat) -> None: ...
|
|
|
|
@_typing.overload
|
|
def getEdgeImage(self, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getEdgeImage(self, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def getGradientImage(self, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getGradientImage(self, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
def getSegments(self) -> _typing.Sequence[_typing.Sequence[cv2.typing.Point]]: ...
|
|
|
|
def getSegmentIndicesOfLines(self) -> _typing.Sequence[int]: ...
|
|
|
|
@_typing.overload
|
|
def detectLines(self, lines: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def detectLines(self, lines: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def detectEllipses(self, ellipses: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def detectEllipses(self, ellipses: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
def setParams(self, parameters: EdgeDrawing.Params) -> None: ...
|
|
|
|
|
|
class DTFilter(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def filter(self, src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., dDepth: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def filter(self, src: cv2.UMat, dst: cv2.UMat | None = ..., dDepth: int = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class GuidedFilter(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def filter(self, src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., dDepth: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def filter(self, src: cv2.UMat, dst: cv2.UMat | None = ..., dDepth: int = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class AdaptiveManifoldFilter(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def filter(self, src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., joint: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def filter(self, src: cv2.UMat, dst: cv2.UMat | None = ..., joint: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
def collectGarbage(self) -> None: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> AdaptiveManifoldFilter: ...
|
|
|
|
|
|
class FastBilateralSolverFilter(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def filter(self, src: cv2.typing.MatLike, confidence: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def filter(self, src: cv2.UMat, confidence: cv2.UMat, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class FastGlobalSmootherFilter(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def filter(self, src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def filter(self, src: cv2.UMat, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class EdgeBoxes(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def getBoundingBoxes(self, edge_map: cv2.typing.MatLike, orientation_map: cv2.typing.MatLike, scores: cv2.typing.MatLike | None = ...) -> tuple[_typing.Sequence[cv2.typing.Rect], cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def getBoundingBoxes(self, edge_map: cv2.UMat, orientation_map: cv2.UMat, scores: cv2.UMat | None = ...) -> tuple[_typing.Sequence[cv2.typing.Rect], cv2.UMat]: ...
|
|
|
|
def getAlpha(self) -> float: ...
|
|
|
|
def setAlpha(self, value: float) -> None: ...
|
|
|
|
def getBeta(self) -> float: ...
|
|
|
|
def setBeta(self, value: float) -> None: ...
|
|
|
|
def getEta(self) -> float: ...
|
|
|
|
def setEta(self, value: float) -> None: ...
|
|
|
|
def getMinScore(self) -> float: ...
|
|
|
|
def setMinScore(self, value: float) -> None: ...
|
|
|
|
def getMaxBoxes(self) -> int: ...
|
|
|
|
def setMaxBoxes(self, value: int) -> None: ...
|
|
|
|
def getEdgeMinMag(self) -> float: ...
|
|
|
|
def setEdgeMinMag(self, value: float) -> None: ...
|
|
|
|
def getEdgeMergeThr(self) -> float: ...
|
|
|
|
def setEdgeMergeThr(self, value: float) -> None: ...
|
|
|
|
def getClusterMinMag(self) -> float: ...
|
|
|
|
def setClusterMinMag(self, value: float) -> None: ...
|
|
|
|
def getMaxAspectRatio(self) -> float: ...
|
|
|
|
def setMaxAspectRatio(self, value: float) -> None: ...
|
|
|
|
def getMinBoxArea(self) -> float: ...
|
|
|
|
def setMinBoxArea(self, value: float) -> None: ...
|
|
|
|
def getGamma(self) -> float: ...
|
|
|
|
def setGamma(self, value: float) -> None: ...
|
|
|
|
def getKappa(self) -> float: ...
|
|
|
|
def setKappa(self, value: float) -> None: ...
|
|
|
|
|
|
class FastLineDetector(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def detect(self, image: cv2.typing.MatLike, lines: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def detect(self, image: cv2.UMat, lines: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def drawSegments(self, image: cv2.typing.MatLike, lines: cv2.typing.MatLike, draw_arrow: bool = ..., linecolor: cv2.typing.Scalar = ..., linethickness: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def drawSegments(self, image: cv2.UMat, lines: cv2.UMat, draw_arrow: bool = ..., linecolor: cv2.typing.Scalar = ..., linethickness: int = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class ContourFitting(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def estimateTransformation(self, src: cv2.typing.MatLike, dst: cv2.typing.MatLike, alphaPhiST: cv2.typing.MatLike | None = ..., fdContour: bool = ...) -> tuple[cv2.typing.MatLike, float]: ...
|
|
@_typing.overload
|
|
def estimateTransformation(self, src: cv2.UMat, dst: cv2.UMat, alphaPhiST: cv2.UMat | None = ..., fdContour: bool = ...) -> tuple[cv2.UMat, float]: ...
|
|
|
|
def setCtrSize(self, n: int) -> None: ...
|
|
|
|
def setFDSize(self, n: int) -> None: ...
|
|
|
|
def getCtrSize(self) -> int: ...
|
|
|
|
def getFDSize(self) -> int: ...
|
|
|
|
|
|
class SuperpixelLSC(cv2.Algorithm):
|
|
# Functions
|
|
def getNumberOfSuperpixels(self) -> int: ...
|
|
|
|
def iterate(self, num_iterations: int = ...) -> None: ...
|
|
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.typing.MatLike | None = ..., thick_line: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.UMat | None = ..., thick_line: bool = ...) -> cv2.UMat: ...
|
|
|
|
def enforceLabelConnectivity(self, min_element_size: int = ...) -> None: ...
|
|
|
|
|
|
class RidgeDetectionFilter(cv2.Algorithm):
|
|
# Functions
|
|
@classmethod
|
|
def create(cls, ddepth: int = ..., dx: int = ..., dy: int = ..., ksize: int = ..., out_dtype: int = ..., scale: float = ..., delta: float = ..., borderType: int = ...) -> RidgeDetectionFilter: ...
|
|
|
|
@_typing.overload
|
|
def getRidgeFilteredImage(self, _img: cv2.typing.MatLike, out: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getRidgeFilteredImage(self, _img: cv2.UMat, out: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class ScanSegment(cv2.Algorithm):
|
|
# Functions
|
|
def getNumberOfSuperpixels(self) -> int: ...
|
|
|
|
@_typing.overload
|
|
def iterate(self, img: cv2.typing.MatLike) -> None: ...
|
|
@_typing.overload
|
|
def iterate(self, img: cv2.UMat) -> None: ...
|
|
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.typing.MatLike | None = ..., thick_line: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.UMat | None = ..., thick_line: bool = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class SuperpixelSEEDS(cv2.Algorithm):
|
|
# Functions
|
|
def getNumberOfSuperpixels(self) -> int: ...
|
|
|
|
@_typing.overload
|
|
def iterate(self, img: cv2.typing.MatLike, num_iterations: int = ...) -> None: ...
|
|
@_typing.overload
|
|
def iterate(self, img: cv2.UMat, num_iterations: int = ...) -> None: ...
|
|
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.typing.MatLike | None = ..., thick_line: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.UMat | None = ..., thick_line: bool = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class SuperpixelSLIC(cv2.Algorithm):
|
|
# Functions
|
|
def getNumberOfSuperpixels(self) -> int: ...
|
|
|
|
def iterate(self, num_iterations: int = ...) -> None: ...
|
|
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabels(self, labels_out: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.typing.MatLike | None = ..., thick_line: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getLabelContourMask(self, image: cv2.UMat | None = ..., thick_line: bool = ...) -> cv2.UMat: ...
|
|
|
|
def enforceLabelConnectivity(self, min_element_size: int = ...) -> None: ...
|
|
|
|
|
|
class SparseMatchInterpolator(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def interpolate(self, from_image: cv2.typing.MatLike, from_points: cv2.typing.MatLike, to_image: cv2.typing.MatLike, to_points: cv2.typing.MatLike, dense_flow: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def interpolate(self, from_image: cv2.UMat, from_points: cv2.UMat, to_image: cv2.UMat, to_points: cv2.UMat, dense_flow: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
|
|
class EdgeAwareInterpolator(SparseMatchInterpolator):
|
|
# Functions
|
|
def setCostMap(self, _costMap: cv2.typing.MatLike) -> None: ...
|
|
|
|
def setK(self, _k: int) -> None: ...
|
|
|
|
def getK(self) -> int: ...
|
|
|
|
def setSigma(self, _sigma: float) -> None: ...
|
|
|
|
def getSigma(self) -> float: ...
|
|
|
|
def setLambda(self, _lambda: float) -> None: ...
|
|
|
|
def getLambda(self) -> float: ...
|
|
|
|
def setUsePostProcessing(self, _use_post_proc: bool) -> None: ...
|
|
|
|
def getUsePostProcessing(self) -> bool: ...
|
|
|
|
def setFGSLambda(self, _lambda: float) -> None: ...
|
|
|
|
def getFGSLambda(self) -> float: ...
|
|
|
|
def setFGSSigma(self, _sigma: float) -> None: ...
|
|
|
|
def getFGSSigma(self) -> float: ...
|
|
|
|
|
|
class RICInterpolator(SparseMatchInterpolator):
|
|
# Functions
|
|
def setK(self, k: int = ...) -> None: ...
|
|
|
|
def getK(self) -> int: ...
|
|
|
|
def setCostMap(self, costMap: cv2.typing.MatLike) -> None: ...
|
|
|
|
def setSuperpixelSize(self, spSize: int = ...) -> None: ...
|
|
|
|
def getSuperpixelSize(self) -> int: ...
|
|
|
|
def setSuperpixelNNCnt(self, spNN: int = ...) -> None: ...
|
|
|
|
def getSuperpixelNNCnt(self) -> int: ...
|
|
|
|
def setSuperpixelRuler(self, ruler: float = ...) -> None: ...
|
|
|
|
def getSuperpixelRuler(self) -> float: ...
|
|
|
|
def setSuperpixelMode(self, mode: int = ...) -> None: ...
|
|
|
|
def getSuperpixelMode(self) -> int: ...
|
|
|
|
def setAlpha(self, alpha: float = ...) -> None: ...
|
|
|
|
def getAlpha(self) -> float: ...
|
|
|
|
def setModelIter(self, modelIter: int = ...) -> None: ...
|
|
|
|
def getModelIter(self) -> int: ...
|
|
|
|
def setRefineModels(self, refineModles: bool = ...) -> None: ...
|
|
|
|
def getRefineModels(self) -> bool: ...
|
|
|
|
def setMaxFlow(self, maxFlow: float = ...) -> None: ...
|
|
|
|
def getMaxFlow(self) -> float: ...
|
|
|
|
def setUseVariationalRefinement(self, use_variational_refinement: bool = ...) -> None: ...
|
|
|
|
def getUseVariationalRefinement(self) -> bool: ...
|
|
|
|
def setUseGlobalSmootherFilter(self, use_FGS: bool = ...) -> None: ...
|
|
|
|
def getUseGlobalSmootherFilter(self) -> bool: ...
|
|
|
|
def setFGSLambda(self, lambda_: float = ...) -> None: ...
|
|
|
|
def getFGSLambda(self) -> float: ...
|
|
|
|
def setFGSSigma(self, sigma: float = ...) -> None: ...
|
|
|
|
def getFGSSigma(self) -> float: ...
|
|
|
|
|
|
class RFFeatureGetter(cv2.Algorithm):
|
|
# Functions
|
|
def getFeatures(self, src: cv2.typing.MatLike, features: cv2.typing.MatLike, gnrmRad: int, gsmthRad: int, shrink: int, outNum: int, gradNum: int) -> None: ...
|
|
|
|
|
|
class StructuredEdgeDetection(cv2.Algorithm):
|
|
# Functions
|
|
@_typing.overload
|
|
def detectEdges(self, src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def detectEdges(self, src: cv2.UMat, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def computeOrientation(self, src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def computeOrientation(self, src: cv2.UMat, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def edgesNms(self, edge_image: cv2.typing.MatLike, orientation_image: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., r: int = ..., s: int = ..., m: float = ..., isParallel: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def edgesNms(self, edge_image: cv2.UMat, orientation_image: cv2.UMat, dst: cv2.UMat | None = ..., r: int = ..., s: int = ..., m: float = ..., isParallel: bool = ...) -> cv2.UMat: ...
|
|
|
|
|
|
|
|
# Functions
|
|
@_typing.overload
|
|
def FastHoughTransform(src: cv2.typing.MatLike, dstMatDepth: int, dst: cv2.typing.MatLike | None = ..., angleRange: int = ..., op: int = ..., makeSkew: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def FastHoughTransform(src: cv2.UMat, dstMatDepth: int, dst: cv2.UMat | None = ..., angleRange: int = ..., op: int = ..., makeSkew: int = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def GradientDericheX(op: cv2.typing.MatLike, alpha: float, omega: float, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def GradientDericheX(op: cv2.UMat, alpha: float, omega: float, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def GradientDericheY(op: cv2.typing.MatLike, alpha: float, omega: float, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def GradientDericheY(op: cv2.UMat, alpha: float, omega: float, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def HoughPoint2Line(houghPoint: cv2.typing.Point, srcImgInfo: cv2.typing.MatLike, angleRange: int = ..., makeSkew: int = ..., rules: int = ...) -> cv2.typing.Vec4i: ...
|
|
@_typing.overload
|
|
def HoughPoint2Line(houghPoint: cv2.typing.Point, srcImgInfo: cv2.UMat, angleRange: int = ..., makeSkew: int = ..., rules: int = ...) -> cv2.typing.Vec4i: ...
|
|
|
|
@_typing.overload
|
|
def PeiLinNormalization(I: cv2.typing.MatLike, T: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def PeiLinNormalization(I: cv2.UMat, T: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def RadonTransform(src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., theta: float = ..., start_angle: float = ..., end_angle: float = ..., crop: bool = ..., norm: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def RadonTransform(src: cv2.UMat, dst: cv2.UMat | None = ..., theta: float = ..., start_angle: float = ..., end_angle: float = ..., crop: bool = ..., norm: bool = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def amFilter(joint: cv2.typing.MatLike, src: cv2.typing.MatLike, sigma_s: float, sigma_r: float, dst: cv2.typing.MatLike | None = ..., adjust_outliers: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def amFilter(joint: cv2.UMat, src: cv2.UMat, sigma_s: float, sigma_r: float, dst: cv2.UMat | None = ..., adjust_outliers: bool = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def anisotropicDiffusion(src: cv2.typing.MatLike, alpha: float, K: float, niters: int, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def anisotropicDiffusion(src: cv2.UMat, alpha: float, K: float, niters: int, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def bilateralTextureFilter(src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., fr: int = ..., numIter: int = ..., sigmaAlpha: float = ..., sigmaAvg: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def bilateralTextureFilter(src: cv2.UMat, dst: cv2.UMat | None = ..., fr: int = ..., numIter: int = ..., sigmaAlpha: float = ..., sigmaAvg: float = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def colorMatchTemplate(img: cv2.typing.MatLike, templ: cv2.typing.MatLike, result: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def colorMatchTemplate(img: cv2.UMat, templ: cv2.UMat, result: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def computeBadPixelPercent(GT: cv2.typing.MatLike, src: cv2.typing.MatLike, ROI: cv2.typing.Rect, thresh: int = ...) -> float: ...
|
|
@_typing.overload
|
|
def computeBadPixelPercent(GT: cv2.UMat, src: cv2.UMat, ROI: cv2.typing.Rect, thresh: int = ...) -> float: ...
|
|
|
|
@_typing.overload
|
|
def computeMSE(GT: cv2.typing.MatLike, src: cv2.typing.MatLike, ROI: cv2.typing.Rect) -> float: ...
|
|
@_typing.overload
|
|
def computeMSE(GT: cv2.UMat, src: cv2.UMat, ROI: cv2.typing.Rect) -> float: ...
|
|
|
|
@_typing.overload
|
|
def contourSampling(src: cv2.typing.MatLike, nbElt: int, out: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def contourSampling(src: cv2.UMat, nbElt: int, out: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def covarianceEstimation(src: cv2.typing.MatLike, windowRows: int, windowCols: int, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def covarianceEstimation(src: cv2.UMat, windowRows: int, windowCols: int, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
def createAMFilter(sigma_s: float, sigma_r: float, adjust_outliers: bool = ...) -> AdaptiveManifoldFilter: ...
|
|
|
|
def createContourFitting(ctr: int = ..., fd: int = ...) -> ContourFitting: ...
|
|
|
|
@_typing.overload
|
|
def createDTFilter(guide: cv2.typing.MatLike, sigmaSpatial: float, sigmaColor: float, mode: int = ..., numIters: int = ...) -> DTFilter: ...
|
|
@_typing.overload
|
|
def createDTFilter(guide: cv2.UMat, sigmaSpatial: float, sigmaColor: float, mode: int = ..., numIters: int = ...) -> DTFilter: ...
|
|
|
|
def createDisparityWLSFilter(matcher_left: cv2.StereoMatcher) -> DisparityWLSFilter: ...
|
|
|
|
def createDisparityWLSFilterGeneric(use_confidence: bool) -> DisparityWLSFilter: ...
|
|
|
|
def createEdgeAwareInterpolator() -> EdgeAwareInterpolator: ...
|
|
|
|
def createEdgeBoxes(alpha: float = ..., beta: float = ..., eta: float = ..., minScore: float = ..., maxBoxes: int = ..., edgeMinMag: float = ..., edgeMergeThr: float = ..., clusterMinMag: float = ..., maxAspectRatio: float = ..., minBoxArea: float = ..., gamma: float = ..., kappa: float = ...) -> EdgeBoxes: ...
|
|
|
|
def createEdgeDrawing() -> EdgeDrawing: ...
|
|
|
|
@_typing.overload
|
|
def createFastBilateralSolverFilter(guide: cv2.typing.MatLike, sigma_spatial: float, sigma_luma: float, sigma_chroma: float, lambda_: float = ..., num_iter: int = ..., max_tol: float = ...) -> FastBilateralSolverFilter: ...
|
|
@_typing.overload
|
|
def createFastBilateralSolverFilter(guide: cv2.UMat, sigma_spatial: float, sigma_luma: float, sigma_chroma: float, lambda_: float = ..., num_iter: int = ..., max_tol: float = ...) -> FastBilateralSolverFilter: ...
|
|
|
|
@_typing.overload
|
|
def createFastGlobalSmootherFilter(guide: cv2.typing.MatLike, lambda_: float, sigma_color: float, lambda_attenuation: float = ..., num_iter: int = ...) -> FastGlobalSmootherFilter: ...
|
|
@_typing.overload
|
|
def createFastGlobalSmootherFilter(guide: cv2.UMat, lambda_: float, sigma_color: float, lambda_attenuation: float = ..., num_iter: int = ...) -> FastGlobalSmootherFilter: ...
|
|
|
|
def createFastLineDetector(length_threshold: int = ..., distance_threshold: float = ..., canny_th1: float = ..., canny_th2: float = ..., canny_aperture_size: int = ..., do_merge: bool = ...) -> FastLineDetector: ...
|
|
|
|
@_typing.overload
|
|
def createGuidedFilter(guide: cv2.typing.MatLike, radius: int, eps: float, scale: float = ...) -> GuidedFilter: ...
|
|
@_typing.overload
|
|
def createGuidedFilter(guide: cv2.UMat, radius: int, eps: float, scale: float = ...) -> GuidedFilter: ...
|
|
|
|
@_typing.overload
|
|
def createQuaternionImage(img: cv2.typing.MatLike, qimg: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def createQuaternionImage(img: cv2.UMat, qimg: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
def createRFFeatureGetter() -> RFFeatureGetter: ...
|
|
|
|
def createRICInterpolator() -> RICInterpolator: ...
|
|
|
|
def createRightMatcher(matcher_left: cv2.StereoMatcher) -> cv2.StereoMatcher: ...
|
|
|
|
def createScanSegment(image_width: int, image_height: int, num_superpixels: int, slices: int = ..., merge_small: bool = ...) -> ScanSegment: ...
|
|
|
|
def createStructuredEdgeDetection(model: str, howToGetFeatures: RFFeatureGetter = ...) -> StructuredEdgeDetection: ...
|
|
|
|
@_typing.overload
|
|
def createSuperpixelLSC(image: cv2.typing.MatLike, region_size: int = ..., ratio: float = ...) -> SuperpixelLSC: ...
|
|
@_typing.overload
|
|
def createSuperpixelLSC(image: cv2.UMat, region_size: int = ..., ratio: float = ...) -> SuperpixelLSC: ...
|
|
|
|
def createSuperpixelSEEDS(image_width: int, image_height: int, image_channels: int, num_superpixels: int, num_levels: int, prior: int = ..., histogram_bins: int = ..., double_step: bool = ...) -> SuperpixelSEEDS: ...
|
|
|
|
@_typing.overload
|
|
def createSuperpixelSLIC(image: cv2.typing.MatLike, algorithm: int = ..., region_size: int = ..., ruler: float = ...) -> SuperpixelSLIC: ...
|
|
@_typing.overload
|
|
def createSuperpixelSLIC(image: cv2.UMat, algorithm: int = ..., region_size: int = ..., ruler: float = ...) -> SuperpixelSLIC: ...
|
|
|
|
@_typing.overload
|
|
def dtFilter(guide: cv2.typing.MatLike, src: cv2.typing.MatLike, sigmaSpatial: float, sigmaColor: float, dst: cv2.typing.MatLike | None = ..., mode: int = ..., numIters: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def dtFilter(guide: cv2.UMat, src: cv2.UMat, sigmaSpatial: float, sigmaColor: float, dst: cv2.UMat | None = ..., mode: int = ..., numIters: int = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def edgePreservingFilter(src: cv2.typing.MatLike, d: int, threshold: float, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def edgePreservingFilter(src: cv2.UMat, d: int, threshold: float, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def fastBilateralSolverFilter(guide: cv2.typing.MatLike, src: cv2.typing.MatLike, confidence: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., sigma_spatial: float = ..., sigma_luma: float = ..., sigma_chroma: float = ..., lambda_: float = ..., num_iter: int = ..., max_tol: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def fastBilateralSolverFilter(guide: cv2.UMat, src: cv2.UMat, confidence: cv2.UMat, dst: cv2.UMat | None = ..., sigma_spatial: float = ..., sigma_luma: float = ..., sigma_chroma: float = ..., lambda_: float = ..., num_iter: int = ..., max_tol: float = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def fastGlobalSmootherFilter(guide: cv2.typing.MatLike, src: cv2.typing.MatLike, lambda_: float, sigma_color: float, dst: cv2.typing.MatLike | None = ..., lambda_attenuation: float = ..., num_iter: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def fastGlobalSmootherFilter(guide: cv2.UMat, src: cv2.UMat, lambda_: float, sigma_color: float, dst: cv2.UMat | None = ..., lambda_attenuation: float = ..., num_iter: int = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def findEllipses(image: cv2.typing.MatLike, ellipses: cv2.typing.MatLike | None = ..., scoreThreshold: float = ..., reliabilityThreshold: float = ..., centerDistanceThreshold: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def findEllipses(image: cv2.UMat, ellipses: cv2.UMat | None = ..., scoreThreshold: float = ..., reliabilityThreshold: float = ..., centerDistanceThreshold: float = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def fourierDescriptor(src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., nbElt: int = ..., nbFD: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def fourierDescriptor(src: cv2.UMat, dst: cv2.UMat | None = ..., nbElt: int = ..., nbFD: int = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def getDisparityVis(src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., scale: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getDisparityVis(src: cv2.UMat, dst: cv2.UMat | None = ..., scale: float = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def guidedFilter(guide: cv2.typing.MatLike, src: cv2.typing.MatLike, radius: int, eps: float, dst: cv2.typing.MatLike | None = ..., dDepth: int = ..., scale: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def guidedFilter(guide: cv2.UMat, src: cv2.UMat, radius: int, eps: float, dst: cv2.UMat | None = ..., dDepth: int = ..., scale: float = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def jointBilateralFilter(joint: cv2.typing.MatLike, src: cv2.typing.MatLike, d: int, sigmaColor: float, sigmaSpace: float, dst: cv2.typing.MatLike | None = ..., borderType: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def jointBilateralFilter(joint: cv2.UMat, src: cv2.UMat, d: int, sigmaColor: float, sigmaSpace: float, dst: cv2.UMat | None = ..., borderType: int = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def l0Smooth(src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., lambda_: float = ..., kappa: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def l0Smooth(src: cv2.UMat, dst: cv2.UMat | None = ..., lambda_: float = ..., kappa: float = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def niBlackThreshold(_src: cv2.typing.MatLike, maxValue: float, type: int, blockSize: int, k: float, _dst: cv2.typing.MatLike | None = ..., binarizationMethod: int = ..., r: float = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def niBlackThreshold(_src: cv2.UMat, maxValue: float, type: int, blockSize: int, k: float, _dst: cv2.UMat | None = ..., binarizationMethod: int = ..., r: float = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def qconj(qimg: cv2.typing.MatLike, qcimg: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def qconj(qimg: cv2.UMat, qcimg: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def qdft(img: cv2.typing.MatLike, flags: int, sideLeft: bool, qimg: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def qdft(img: cv2.UMat, flags: int, sideLeft: bool, qimg: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def qmultiply(src1: cv2.typing.MatLike, src2: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def qmultiply(src1: cv2.UMat, src2: cv2.UMat, dst: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def qunitary(qimg: cv2.typing.MatLike, qnimg: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def qunitary(qimg: cv2.UMat, qnimg: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def readGT(src_path: str, dst: cv2.typing.MatLike | None = ...) -> tuple[int, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def readGT(src_path: str, dst: cv2.UMat | None = ...) -> tuple[int, cv2.UMat]: ...
|
|
|
|
@_typing.overload
|
|
def rollingGuidanceFilter(src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., d: int = ..., sigmaColor: float = ..., sigmaSpace: float = ..., numOfIter: int = ..., borderType: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def rollingGuidanceFilter(src: cv2.UMat, dst: cv2.UMat | None = ..., d: int = ..., sigmaColor: float = ..., sigmaSpace: float = ..., numOfIter: int = ..., borderType: int = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def thinning(src: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., thinningType: int = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def thinning(src: cv2.UMat, dst: cv2.UMat | None = ..., thinningType: int = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def transformFD(src: cv2.typing.MatLike, t: cv2.typing.MatLike, dst: cv2.typing.MatLike | None = ..., fdContour: bool = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def transformFD(src: cv2.UMat, t: cv2.UMat, dst: cv2.UMat | None = ..., fdContour: bool = ...) -> cv2.UMat: ...
|
|
|
|
@_typing.overload
|
|
def weightedMedianFilter(joint: cv2.typing.MatLike, src: cv2.typing.MatLike, r: int, dst: cv2.typing.MatLike | None = ..., sigma: float = ..., weightType: int = ..., mask: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def weightedMedianFilter(joint: cv2.UMat, src: cv2.UMat, r: int, dst: cv2.UMat | None = ..., sigma: float = ..., weightType: int = ..., mask: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
|