2025-08-11 12:24:21 +08:00

463 lines
15 KiB
Python

from typing import Set
import pytest
from opt_einsum import backends, contract, contract_expression, sharing
from opt_einsum.contract import ArrayShaped, infer_backend, parse_backend
from opt_einsum.testing import build_views
try:
# needed so tensorflow doesn't allocate all gpu mem
try:
from tensorflow import ConfigProto # type: ignore
from tensorflow import Session as TFSession
except ImportError:
from tensorflow.compat.v1 import ConfigProto # type: ignore
from tensorflow.compat.v1 import Session as TFSession
_TF_CONFIG = ConfigProto()
_TF_CONFIG.gpu_options.allow_growth = True
except ImportError:
pass
tests = [
"ab,bc->ca",
"abc,bcd,dea",
"abc,def->fedcba",
"abc,bcd,df->fa",
# test 'prefer einsum' ops
"ijk,ikj",
"i,j->ij",
"ijk,k->ij",
"AB,BC->CA",
]
@pytest.mark.parametrize("string", tests)
def test_tensorflow(string: str) -> None:
np = pytest.importorskip("numpy")
pytest.importorskip("tensorflow")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
opt = np.empty_like(ein)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
sess = TFSession(config=_TF_CONFIG)
with sess.as_default():
expr(*views, backend="tensorflow", out=opt)
sess.close()
assert np.allclose(ein, opt)
# test non-conversion mode
tensorflow_views = [backends.to_tensorflow(view) for view in views]
expr(*tensorflow_views)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_tensorflow_with_constants(constants: Set[int]) -> None:
np = pytest.importorskip("numpy")
tf = pytest.importorskip("tensorflow")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = np.random.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check tensorflow
with TFSession(config=_TF_CONFIG).as_default():
res_got = expr(var, backend="tensorflow")
assert all(
array is None or infer_backend(array) == "tensorflow" for array in expr._evaluated_constants["tensorflow"]
)
assert np.allclose(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="numpy")
assert np.allclose(res_exp, res_got2)
# check tensorflow call returns tensorflow still
res_got3 = expr(backends.to_tensorflow(var))
assert isinstance(res_got3, tf.Tensor)
@pytest.mark.parametrize("string", tests)
def test_tensorflow_with_sharing(string: str) -> None:
np = pytest.importorskip("numpy")
tf = pytest.importorskip("tensorflow")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
sess = TFSession(config=_TF_CONFIG)
with sess.as_default(), sharing.shared_intermediates() as cache:
tfl1 = expr(*views, backend="tensorflow")
assert sharing.get_sharing_cache() is cache
cache_sz = len(cache)
assert cache_sz > 0
tfl2 = expr(*views, backend="tensorflow")
assert len(cache) == cache_sz
assert all(isinstance(t, tf.Tensor) for t in cache.values())
assert np.allclose(ein, tfl1)
assert np.allclose(ein, tfl2)
@pytest.mark.parametrize("string", tests)
def test_theano(string: str) -> None:
np = pytest.importorskip("numpy")
theano = pytest.importorskip("theano")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="theano")
assert np.allclose(ein, opt)
# test non-conversion mode
theano_views = [backends.to_theano(view) for view in views]
theano_opt = expr(*theano_views)
assert isinstance(theano_opt, theano.tensor.TensorVariable)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_theano_with_constants(constants: Set[int]) -> None:
np = pytest.importorskip("numpy")
theano = pytest.importorskip("theano")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = np.random.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check theano
res_got = expr(var, backend="theano")
assert all(array is None or infer_backend(array) == "theano" for array in expr._evaluated_constants["theano"])
assert np.allclose(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="numpy")
assert np.allclose(res_exp, res_got2)
# check theano call returns theano still
res_got3 = expr(backends.to_theano(var))
assert isinstance(res_got3, theano.tensor.TensorVariable)
@pytest.mark.parametrize("string", tests)
def test_theano_with_sharing(string: str) -> None:
np = pytest.importorskip("numpy")
theano = pytest.importorskip("theano")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
with sharing.shared_intermediates() as cache:
thn1 = expr(*views, backend="theano")
assert sharing.get_sharing_cache() is cache
cache_sz = len(cache)
assert cache_sz > 0
thn2 = expr(*views, backend="theano")
assert len(cache) == cache_sz
assert all(isinstance(t, theano.tensor.TensorVariable) for t in cache.values())
assert np.allclose(ein, thn1)
assert np.allclose(ein, thn2)
@pytest.mark.parametrize("string", tests)
def test_cupy(string: str) -> None:
np = pytest.importorskip("numpy") # pragma: no cover
cupy = pytest.importorskip("cupy")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="cupy")
assert np.allclose(ein, opt)
# test non-conversion mode
cupy_views = [backends.to_cupy(view) for view in views]
cupy_opt = expr(*cupy_views)
assert isinstance(cupy_opt, cupy.ndarray)
assert np.allclose(ein, cupy.asnumpy(cupy_opt))
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_cupy_with_constants(constants: Set[int]) -> None:
np = pytest.importorskip("numpy") # pragma: no cover
cupy = pytest.importorskip("cupy")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = np.random.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check cupy
res_got = expr(var, backend="cupy")
# check cupy versions of constants exist
assert all(array is None or infer_backend(array) == "cupy" for array in expr._evaluated_constants["cupy"])
assert np.allclose(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="numpy")
assert np.allclose(res_exp, res_got2)
# check cupy call returns cupy still
res_got3 = expr(cupy.asarray(var))
assert isinstance(res_got3, cupy.ndarray)
assert np.allclose(res_exp, res_got3.get())
@pytest.mark.parametrize("string", tests)
def test_jax(string: str) -> None:
np = pytest.importorskip("numpy") # pragma: no cover
pytest.importorskip("jax")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="jax")
assert np.allclose(ein, opt)
assert isinstance(opt, np.ndarray)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_jax_with_constants(constants: Set[int]) -> None:
jax = pytest.importorskip("jax")
key = jax.random.PRNGKey(42)
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [jax.random.uniform(key, shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = jax.random.uniform(key, shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check jax
res_got = expr(var, backend="jax")
# check jax versions of constants exist
assert all(array is None or infer_backend(array).startswith("jax") for array in expr._evaluated_constants["jax"])
assert jax.numpy.sum(jax.numpy.abs(res_exp - res_got)) < 1e-8
def test_jax_jit_gradient() -> None:
jax = pytest.importorskip("jax")
key = jax.random.PRNGKey(42)
eq = "ij,jk,kl->"
shapes = (2, 3), (3, 4), (4, 2)
views = [jax.random.uniform(key, s) for s in shapes]
expr = contract_expression(eq, *shapes)
x0 = expr(*views)
jit_expr = jax.jit(expr)
x1 = jit_expr(*views).item()
assert x1 == pytest.approx(x0, rel=1e-5)
# jax only takes gradient w.r.t first argument
grad_expr = jax.jit(jax.grad(lambda views: expr(*views)))
view_grads = grad_expr(views)
assert all(v1.shape == v2.shape for v1, v2 in zip(views, view_grads))
# taking a step along the gradient should reduce our 'loss'
new_views = [v - 0.001 * dv for v, dv in zip(views, view_grads)]
x2 = jit_expr(*new_views).item()
assert x2 < x1
def test_autograd_gradient() -> None:
np = pytest.importorskip("numpy")
autograd = pytest.importorskip("autograd")
eq = "ij,jk,kl->"
shapes = (2, 3), (3, 4), (4, 2)
views = [np.random.randn(*s) for s in shapes]
expr = contract_expression(eq, *shapes)
x0 = expr(*views)
# autograd only takes gradient w.r.t first argument
grad_expr = autograd.grad(lambda views: expr(*views))
view_grads = grad_expr(views)
assert all(v1.shape == v2.shape for v1, v2 in zip(views, view_grads))
# taking a step along the gradient should reduce our 'loss'
new_views = [v - 0.001 * dv for v, dv in zip(views, view_grads)]
x1 = expr(*new_views)
assert x1 < x0
@pytest.mark.parametrize("string", tests)
def test_dask(string: str) -> None:
np = pytest.importorskip("numpy")
da = pytest.importorskip("dask.array")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
# test non-conversion mode
da_views = [da.from_array(x, chunks=(2)) for x in views]
da_opt = expr(*da_views)
# check type is maintained when not using numpy arrays
assert isinstance(da_opt, da.Array)
assert np.allclose(ein, np.array(da_opt))
# try raw contract
da_opt = contract(string, *da_views)
assert isinstance(da_opt, da.Array)
assert np.allclose(ein, np.array(da_opt))
@pytest.mark.parametrize("string", tests)
def test_sparse(string: str) -> None:
np = pytest.importorskip("numpy")
sparse = pytest.importorskip("sparse")
views = build_views(string)
# sparsify views so they don't become dense during contraction
for view in views:
np.random.seed(42)
mask = np.random.choice([False, True], view.shape, True, [0.05, 0.95])
view[mask] = 0
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
# test non-conversion mode
sparse_views = [sparse.COO.from_numpy(x) for x in views]
sparse_opt = expr(*sparse_views)
# If the expression returns a float, stop here
if not ein.shape:
assert pytest.approx(ein) == 0.0
return
# check type is maintained when not using numpy arrays
assert isinstance(sparse_opt, sparse.COO)
assert np.allclose(ein, sparse_opt.todense())
# try raw contract
sparse_opt = contract(string, *sparse_views)
assert isinstance(sparse_opt, sparse.COO)
assert np.allclose(ein, sparse_opt.todense())
@pytest.mark.parametrize("string", tests)
def test_torch(string: str) -> None:
torch = pytest.importorskip("torch")
views = build_views(string, array_function=torch.rand)
ein = torch.einsum(string, *views)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="torch")
torch.testing.assert_close(ein, opt)
# test non-conversion mode
torch_views = [backends.to_torch(view) for view in views]
torch_opt = expr(*torch_views)
assert isinstance(torch_opt, torch.Tensor)
torch.testing.assert_close(ein, torch_opt)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_torch_with_constants(constants: Set[int]) -> None:
torch = pytest.importorskip("torch")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [torch.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = torch.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)), backend="torch")
expr = contract_expression(eq, *ops, constants=constants)
# check torch
res_got = expr(var, backend="torch")
assert all(array is None or infer_backend(array) == "torch" for array in expr._evaluated_constants["torch"])
torch.testing.assert_close(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="torch")
torch.testing.assert_close(res_exp, res_got2)
# check torch call returns torch still
res_got3 = expr(backends.to_torch(var))
assert isinstance(res_got3, torch.Tensor)
torch.testing.assert_close(res_exp, res_got3)
def test_auto_backend_custom_array_no_tensordot() -> None:
x = ArrayShaped((1, 2, 3))
# Shaped is an array-like object defined by opt_einsum - which has no TDOT
assert infer_backend(x) == "opt_einsum"
assert parse_backend([x], "auto") == "numpy"
assert parse_backend([x], None) == "numpy"
@pytest.mark.parametrize("string", tests)
def test_object_arrays_backend(string: str) -> None:
np = pytest.importorskip("numpy")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
assert ein.dtype != object
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
obj_views = [view.astype(object) for view in views]
# try raw contract
obj_opt = contract(string, *obj_views, backend="object")
assert obj_opt.dtype == object
assert np.allclose(ein, obj_opt.astype(float))
# test expression
obj_opt = expr(*obj_views, backend="object")
assert obj_opt.dtype == object
assert np.allclose(ein, obj_opt.astype(float))