216 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import warnings
 | |
| import math
 | |
| 
 | |
| import numpy as np
 | |
| import pytest
 | |
| 
 | |
| from scipy.fft._fftlog import fht, ifht, fhtoffset
 | |
| from scipy.special import poch
 | |
| 
 | |
| from scipy._lib._array_api import xp_assert_close, xp_assert_less
 | |
| 
 | |
| skip_xp_backends = pytest.mark.skip_xp_backends
 | |
| 
 | |
| 
 | |
| def test_fht_agrees_with_fftlog(xp):
 | |
|     # check that fht numerically agrees with the output from Fortran FFTLog,
 | |
|     # the results were generated with the provided `fftlogtest` program,
 | |
|     # after fixing how the k array is generated (divide range by n-1, not n)
 | |
| 
 | |
|     # test function, analytical Hankel transform is of the same form
 | |
|     def f(r, mu):
 | |
|         return r**(mu+1)*np.exp(-r**2/2)
 | |
| 
 | |
|     r = np.logspace(-4, 4, 16)
 | |
| 
 | |
|     dln = math.log(r[1]/r[0])
 | |
|     mu = 0.3
 | |
|     offset = 0.0
 | |
|     bias = 0.0
 | |
| 
 | |
|     a = xp.asarray(f(r, mu))
 | |
| 
 | |
|     # test 1: compute as given
 | |
|     ours = fht(a, dln, mu, offset=offset, bias=bias)
 | |
|     theirs = [-0.1159922613593045E-02, +0.1625822618458832E-02,
 | |
|               -0.1949518286432330E-02, +0.3789220182554077E-02,
 | |
|               +0.5093959119952945E-03, +0.2785387803618774E-01,
 | |
|               +0.9944952700848897E-01, +0.4599202164586588E+00,
 | |
|               +0.3157462160881342E+00, -0.8201236844404755E-03,
 | |
|               -0.7834031308271878E-03, +0.3931444945110708E-03,
 | |
|               -0.2697710625194777E-03, +0.3568398050238820E-03,
 | |
|               -0.5554454827797206E-03, +0.8286331026468585E-03]
 | |
|     theirs = xp.asarray(theirs, dtype=xp.float64)
 | |
|     xp_assert_close(ours, theirs)
 | |
| 
 | |
|     # test 2: change to optimal offset
 | |
|     offset = fhtoffset(dln, mu, bias=bias)
 | |
|     ours = fht(a, dln, mu, offset=offset, bias=bias)
 | |
|     theirs = [+0.4353768523152057E-04, -0.9197045663594285E-05,
 | |
|               +0.3150140927838524E-03, +0.9149121960963704E-03,
 | |
|               +0.5808089753959363E-02, +0.2548065256377240E-01,
 | |
|               +0.1339477692089897E+00, +0.4821530509479356E+00,
 | |
|               +0.2659899781579785E+00, -0.1116475278448113E-01,
 | |
|               +0.1791441617592385E-02, -0.4181810476548056E-03,
 | |
|               +0.1314963536765343E-03, -0.5422057743066297E-04,
 | |
|               +0.3208681804170443E-04, -0.2696849476008234E-04]
 | |
|     theirs = xp.asarray(theirs, dtype=xp.float64)
 | |
|     xp_assert_close(ours, theirs)
 | |
| 
 | |
|     # test 3: positive bias
 | |
|     bias = 0.8
 | |
|     offset = fhtoffset(dln, mu, bias=bias)
 | |
|     # offset is a np.float64, which array-api-strict disallows
 | |
|     # even if it's technically a subclass of float
 | |
|     offset = float(offset)
 | |
| 
 | |
|     ours = fht(a, dln, mu, offset=offset, bias=bias)
 | |
|     theirs = [-7.3436673558316850E+00, +0.1710271207817100E+00,
 | |
|               +0.1065374386206564E+00, -0.5121739602708132E-01,
 | |
|               +0.2636649319269470E-01, +0.1697209218849693E-01,
 | |
|               +0.1250215614723183E+00, +0.4739583261486729E+00,
 | |
|               +0.2841149874912028E+00, -0.8312764741645729E-02,
 | |
|               +0.1024233505508988E-02, -0.1644902767389120E-03,
 | |
|               +0.3305775476926270E-04, -0.7786993194882709E-05,
 | |
|               +0.1962258449520547E-05, -0.8977895734909250E-06]
 | |
|     theirs = xp.asarray(theirs, dtype=xp.float64)
 | |
|     xp_assert_close(ours, theirs)
 | |
| 
 | |
|     # test 4: negative bias
 | |
|     bias = -0.8
 | |
|     offset = fhtoffset(dln, mu, bias=bias)
 | |
|     offset = float(offset)
 | |
| 
 | |
|     ours = fht(a, dln, mu, offset=offset, bias=bias)
 | |
|     theirs = [+0.8985777068568745E-05, +0.4074898209936099E-04,
 | |
|               +0.2123969254700955E-03, +0.1009558244834628E-02,
 | |
|               +0.5131386375222176E-02, +0.2461678673516286E-01,
 | |
|               +0.1235812845384476E+00, +0.4719570096404403E+00,
 | |
|               +0.2893487490631317E+00, -0.1686570611318716E-01,
 | |
|               +0.2231398155172505E-01, -0.1480742256379873E-01,
 | |
|               +0.1692387813500801E+00, +0.3097490354365797E+00,
 | |
|               +2.7593607182401860E+00, 10.5251075070045800E+00]
 | |
|     theirs = xp.asarray(theirs, dtype=xp.float64)
 | |
|     xp_assert_close(ours, theirs)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('optimal', [True, False])
 | |
| @pytest.mark.parametrize('offset', [0.0, 1.0, -1.0])
 | |
| @pytest.mark.parametrize('bias', [0, 0.1, -0.1])
 | |
| @pytest.mark.parametrize('n', [64, 63])
 | |
| def test_fht_identity(n, bias, offset, optimal, xp):
 | |
|     rng = np.random.RandomState(3491349965)
 | |
| 
 | |
|     a = xp.asarray(rng.standard_normal(n))
 | |
|     dln = rng.uniform(-1, 1)
 | |
|     mu = rng.uniform(-2, 2)
 | |
| 
 | |
|     if optimal:
 | |
|         offset = fhtoffset(dln, mu, initial=offset, bias=bias)
 | |
|         # offset is a np.float64, which array-api-strict disallows
 | |
|         # even if it's technically a subclass of float
 | |
|         offset = float(offset)
 | |
| 
 | |
|     A = fht(a, dln, mu, offset=offset, bias=bias)
 | |
|     a_ = ifht(A, dln, mu, offset=offset, bias=bias)
 | |
| 
 | |
|     xp_assert_close(a_, a, rtol=1.5e-7)
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| @pytest.mark.thread_unsafe
 | |
| def test_fht_special_cases(xp):
 | |
|     rng = np.random.RandomState(3491349965)
 | |
| 
 | |
|     a = xp.asarray(rng.standard_normal(64))
 | |
|     dln = rng.uniform(-1, 1)
 | |
| 
 | |
|     # let x = (mu+1+q)/2, y = (mu+1-q)/2, M = {0, -1, -2, ...}
 | |
| 
 | |
|     # case 1: x in M, y in M => well-defined transform
 | |
|     mu, bias = -4.0, 1.0
 | |
|     with warnings.catch_warnings(record=True) as record:
 | |
|         fht(a, dln, mu, bias=bias)
 | |
|         assert not record, 'fht warned about a well-defined transform'
 | |
| 
 | |
|     # case 2: x not in M, y in M => well-defined transform
 | |
|     mu, bias = -2.5, 0.5
 | |
|     with warnings.catch_warnings(record=True) as record:
 | |
|         fht(a, dln, mu, bias=bias)
 | |
|         assert not record, 'fht warned about a well-defined transform'
 | |
| 
 | |
|     # with fht_lock:
 | |
|     # case 3: x in M, y not in M => singular transform
 | |
|     mu, bias = -3.5, 0.5
 | |
|     with pytest.warns(Warning) as record:
 | |
|         fht(a, dln, mu, bias=bias)
 | |
|         assert record, 'fht did not warn about a singular transform'
 | |
| 
 | |
|     # with fht_lock:
 | |
|     # case 4: x not in M, y in M => singular inverse transform
 | |
|     mu, bias = -2.5, 0.5
 | |
|     with pytest.warns(Warning) as record:
 | |
|         ifht(a, dln, mu, bias=bias)
 | |
|         assert record, 'ifht did not warn about a singular transform'
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize('n', [64, 63])
 | |
| def test_fht_exact(n, xp):
 | |
|     rng = np.random.RandomState(3491349965)
 | |
| 
 | |
|     # for a(r) a power law r^\gamma, the fast Hankel transform produces the
 | |
|     # exact continuous Hankel transform if biased with q = \gamma
 | |
| 
 | |
|     mu = rng.uniform(0, 3)
 | |
| 
 | |
|     # convergence of HT: -1-mu < gamma < 1/2
 | |
|     gamma = rng.uniform(-1-mu, 1/2)
 | |
| 
 | |
|     r = np.logspace(-2, 2, n)
 | |
|     a = xp.asarray(r**gamma)
 | |
| 
 | |
|     dln = math.log(r[1]/r[0])
 | |
| 
 | |
|     offset = fhtoffset(dln, mu, initial=0.0, bias=gamma)
 | |
|     # offset is a np.float64, which array-api-strict disallows
 | |
|     # even if it's technically a subclass of float
 | |
|     offset = float(offset)
 | |
| 
 | |
|     A = fht(a, dln, mu, offset=offset, bias=gamma)
 | |
| 
 | |
|     k = np.exp(offset)/r[::-1]
 | |
| 
 | |
|     # analytical result
 | |
|     At = xp.asarray((2/k)**gamma * poch((mu+1-gamma)/2, gamma))
 | |
| 
 | |
|     xp_assert_close(A, At)
 | |
| 
 | |
| @skip_xp_backends(np_only=True,
 | |
|                   reason='array-likes only supported for NumPy backend')
 | |
| @pytest.mark.parametrize("op", [fht, ifht])
 | |
| def test_array_like(xp, op):
 | |
|     x = [[[1.0, 1.0], [1.0, 1.0]],
 | |
|          [[1.0, 1.0], [1.0, 1.0]],
 | |
|          [[1.0, 1.0], [1.0, 1.0]]]
 | |
|     xp_assert_close(op(x, 1.0, 2.0), op(xp.asarray(x), 1.0, 2.0))
 | |
| 
 | |
| @pytest.mark.parametrize('n', [128, 129])
 | |
| def test_gh_21661(xp, n):
 | |
|     one = xp.asarray(1.0)
 | |
|     mu = 0.0
 | |
|     r = np.logspace(-7, 1, n)
 | |
|     dln = math.log(r[1] / r[0])
 | |
|     offset = fhtoffset(dln, initial=-6 * np.log(10), mu=mu)
 | |
|     r = xp.asarray(r, dtype=one.dtype)
 | |
|     k = math.exp(offset) / xp.flip(r, axis=-1)
 | |
| 
 | |
|     def f(x, mu):
 | |
|         return x**(mu + 1)*xp.exp(-x**2/2)
 | |
| 
 | |
|     a_r = f(r, mu)
 | |
|     fht_val = fht(a_r, dln, mu=mu, offset=offset)
 | |
|     a_k = f(k, mu)
 | |
|     rel_err = xp.max(xp.abs((fht_val - a_k) / a_k))
 | |
|     xp_assert_less(rel_err, xp.asarray(7.28e+16)[()])
 |