1314 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1314 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import copy
 | |
| 
 | |
| import numpy as np
 | |
| from numpy.testing import (assert_equal, assert_almost_equal,
 | |
|                            assert_, assert_allclose, assert_array_equal)
 | |
| import pytest
 | |
| from pytest import raises as assert_raises
 | |
| 
 | |
| import scipy.spatial._qhull as qhull
 | |
| from scipy.spatial import cKDTree as KDTree  # type: ignore[attr-defined]
 | |
| from scipy.spatial import Voronoi
 | |
| 
 | |
| import itertools
 | |
| 
 | |
| def sorted_tuple(x):
 | |
|     return tuple(sorted(x))
 | |
| 
 | |
| 
 | |
| def assert_unordered_tuple_list_equal(a, b, tpl=tuple):
 | |
|     if isinstance(a, np.ndarray):
 | |
|         a = a.tolist()
 | |
|     if isinstance(b, np.ndarray):
 | |
|         b = b.tolist()
 | |
|     a = list(map(tpl, a))
 | |
|     a.sort()
 | |
|     b = list(map(tpl, b))
 | |
|     b.sort()
 | |
|     assert_equal(a, b)
 | |
| 
 | |
| 
 | |
| np.random.seed(1234)
 | |
| 
 | |
| points = [(0,0), (0,1), (1,0), (1,1), (0.5, 0.5), (0.5, 1.5)]
 | |
| 
 | |
| pathological_data_1 = np.array([
 | |
|     [-3.14,-3.14], [-3.14,-2.36], [-3.14,-1.57], [-3.14,-0.79],
 | |
|     [-3.14,0.0], [-3.14,0.79], [-3.14,1.57], [-3.14,2.36],
 | |
|     [-3.14,3.14], [-2.36,-3.14], [-2.36,-2.36], [-2.36,-1.57],
 | |
|     [-2.36,-0.79], [-2.36,0.0], [-2.36,0.79], [-2.36,1.57],
 | |
|     [-2.36,2.36], [-2.36,3.14], [-1.57,-0.79], [-1.57,0.79],
 | |
|     [-1.57,-1.57], [-1.57,0.0], [-1.57,1.57], [-1.57,-3.14],
 | |
|     [-1.57,-2.36], [-1.57,2.36], [-1.57,3.14], [-0.79,-1.57],
 | |
|     [-0.79,1.57], [-0.79,-3.14], [-0.79,-2.36], [-0.79,-0.79],
 | |
|     [-0.79,0.0], [-0.79,0.79], [-0.79,2.36], [-0.79,3.14],
 | |
|     [0.0,-3.14], [0.0,-2.36], [0.0,-1.57], [0.0,-0.79], [0.0,0.0],
 | |
|     [0.0,0.79], [0.0,1.57], [0.0,2.36], [0.0,3.14], [0.79,-3.14],
 | |
|     [0.79,-2.36], [0.79,-0.79], [0.79,0.0], [0.79,0.79],
 | |
|     [0.79,2.36], [0.79,3.14], [0.79,-1.57], [0.79,1.57],
 | |
|     [1.57,-3.14], [1.57,-2.36], [1.57,2.36], [1.57,3.14],
 | |
|     [1.57,-1.57], [1.57,0.0], [1.57,1.57], [1.57,-0.79],
 | |
|     [1.57,0.79], [2.36,-3.14], [2.36,-2.36], [2.36,-1.57],
 | |
|     [2.36,-0.79], [2.36,0.0], [2.36,0.79], [2.36,1.57],
 | |
|     [2.36,2.36], [2.36,3.14], [3.14,-3.14], [3.14,-2.36],
 | |
|     [3.14,-1.57], [3.14,-0.79], [3.14,0.0], [3.14,0.79],
 | |
|     [3.14,1.57], [3.14,2.36], [3.14,3.14],
 | |
| ])
 | |
| 
 | |
| pathological_data_2 = np.array([
 | |
|     [-1, -1], [-1, 0], [-1, 1],
 | |
|     [0, -1], [0, 0], [0, 1],
 | |
|     [1, -1 - np.finfo(np.float64).eps], [1, 0], [1, 1],
 | |
| ])
 | |
| 
 | |
| bug_2850_chunks = [np.random.rand(10, 2),
 | |
|                    np.array([[0,0], [0,1], [1,0], [1,1]])  # add corners
 | |
|                    ]
 | |
| 
 | |
| # same with some additional chunks
 | |
| bug_2850_chunks_2 = (bug_2850_chunks +
 | |
|                      [np.random.rand(10, 2),
 | |
|                       0.25 + np.array([[0,0], [0,1], [1,0], [1,1]])])
 | |
| 
 | |
| DATASETS = {
 | |
|     'some-points': np.asarray(points),
 | |
|     'random-2d': np.random.rand(30, 2),
 | |
|     'random-3d': np.random.rand(30, 3),
 | |
|     'random-4d': np.random.rand(30, 4),
 | |
|     'random-5d': np.random.rand(30, 5),
 | |
|     'random-6d': np.random.rand(10, 6),
 | |
|     'random-7d': np.random.rand(10, 7),
 | |
|     'random-8d': np.random.rand(10, 8),
 | |
|     'pathological-1': pathological_data_1,
 | |
|     'pathological-2': pathological_data_2
 | |
| }
 | |
| 
 | |
| INCREMENTAL_DATASETS = {
 | |
|     'bug-2850': (bug_2850_chunks, None),
 | |
|     'bug-2850-2': (bug_2850_chunks_2, None),
 | |
| }
 | |
| 
 | |
| 
 | |
| def _add_inc_data(name, chunksize):
 | |
|     """
 | |
|     Generate incremental datasets from basic data sets
 | |
|     """
 | |
|     points = DATASETS[name]
 | |
|     ndim = points.shape[1]
 | |
| 
 | |
|     opts = None
 | |
|     nmin = ndim + 2
 | |
| 
 | |
|     if name == 'some-points':
 | |
|         # since Qz is not allowed, use QJ
 | |
|         opts = 'QJ Pp'
 | |
|     elif name == 'pathological-1':
 | |
|         # include enough points so that we get different x-coordinates
 | |
|         nmin = 12
 | |
| 
 | |
|     chunks = [points[:nmin]]
 | |
|     for j in range(nmin, len(points), chunksize):
 | |
|         chunks.append(points[j:j+chunksize])
 | |
| 
 | |
|     new_name = f"{name}-chunk-{chunksize}"
 | |
|     assert new_name not in INCREMENTAL_DATASETS
 | |
|     INCREMENTAL_DATASETS[new_name] = (chunks, opts)
 | |
| 
 | |
| 
 | |
| for name in DATASETS:
 | |
|     for chunksize in 1, 4, 16:
 | |
|         _add_inc_data(name, chunksize)
 | |
| 
 | |
| 
 | |
| class Test_Qhull:
 | |
|     def test_swapping(self):
 | |
|         # Check that Qhull state swapping works
 | |
| 
 | |
|         x = qhull._Qhull(b'v',
 | |
|                          np.array([[0,0],[0,1],[1,0],[1,1.],[0.5,0.5]]),
 | |
|                          b'Qz')
 | |
|         xd = copy.deepcopy(x.get_voronoi_diagram())
 | |
| 
 | |
|         y = qhull._Qhull(b'v',
 | |
|                          np.array([[0,0],[0,1],[1,0],[1,2.]]),
 | |
|                          b'Qz')
 | |
|         yd = copy.deepcopy(y.get_voronoi_diagram())
 | |
| 
 | |
|         xd2 = copy.deepcopy(x.get_voronoi_diagram())
 | |
|         x.close()
 | |
|         yd2 = copy.deepcopy(y.get_voronoi_diagram())
 | |
|         y.close()
 | |
| 
 | |
|         assert_raises(RuntimeError, x.get_voronoi_diagram)
 | |
|         assert_raises(RuntimeError, y.get_voronoi_diagram)
 | |
| 
 | |
|         assert_allclose(xd[0], xd2[0])
 | |
|         assert_unordered_tuple_list_equal(xd[1], xd2[1], tpl=sorted_tuple)
 | |
|         assert_unordered_tuple_list_equal(xd[2], xd2[2], tpl=sorted_tuple)
 | |
|         assert_unordered_tuple_list_equal(xd[3], xd2[3], tpl=sorted_tuple)
 | |
|         assert_array_equal(xd[4], xd2[4])
 | |
| 
 | |
|         assert_allclose(yd[0], yd2[0])
 | |
|         assert_unordered_tuple_list_equal(yd[1], yd2[1], tpl=sorted_tuple)
 | |
|         assert_unordered_tuple_list_equal(yd[2], yd2[2], tpl=sorted_tuple)
 | |
|         assert_unordered_tuple_list_equal(yd[3], yd2[3], tpl=sorted_tuple)
 | |
|         assert_array_equal(yd[4], yd2[4])
 | |
| 
 | |
|         x.close()
 | |
|         assert_raises(RuntimeError, x.get_voronoi_diagram)
 | |
|         y.close()
 | |
|         assert_raises(RuntimeError, y.get_voronoi_diagram)
 | |
| 
 | |
|     def test_issue_8051(self):
 | |
|         points = np.array(
 | |
|             [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],[2, 0], [2, 1], [2, 2]]
 | |
|         )
 | |
|         Voronoi(points)
 | |
| 
 | |
| 
 | |
| class TestUtilities:
 | |
|     """
 | |
|     Check that utility functions work.
 | |
| 
 | |
|     """
 | |
| 
 | |
|     def test_find_simplex(self):
 | |
|         # Simple check that simplex finding works
 | |
|         points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
 | |
|         tri = qhull.Delaunay(points)
 | |
| 
 | |
|         # +---+
 | |
|         # |\ 0|
 | |
|         # | \ |
 | |
|         # |1 \|
 | |
|         # +---+
 | |
| 
 | |
|         assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]])
 | |
| 
 | |
|         for p in [(0.25, 0.25, 1),
 | |
|                   (0.75, 0.75, 0),
 | |
|                   (0.3, 0.2, 1)]:
 | |
|             i = tri.find_simplex(p[:2])
 | |
|             assert_equal(i, p[2], err_msg=f'{p!r}')
 | |
|             j = qhull.tsearch(tri, p[:2])
 | |
|             assert_equal(i, j)
 | |
| 
 | |
|     def test_plane_distance(self):
 | |
|         # Compare plane distance from hyperplane equations obtained from Qhull
 | |
|         # to manually computed plane equations
 | |
|         x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
 | |
|                       (0.99440079, 0.45182168)], dtype=np.float64)
 | |
|         p = np.array([0.99966555, 0.15685619], dtype=np.float64)
 | |
| 
 | |
|         tri = qhull.Delaunay(x)
 | |
| 
 | |
|         z = tri.lift_points(x)
 | |
|         pz = tri.lift_points(p)
 | |
| 
 | |
|         dist = tri.plane_distance(p)
 | |
| 
 | |
|         for j, v in enumerate(tri.simplices):
 | |
|             x1 = z[v[0]]
 | |
|             x2 = z[v[1]]
 | |
|             x3 = z[v[2]]
 | |
| 
 | |
|             n = np.cross(x1 - x3, x2 - x3)
 | |
|             n /= np.sqrt(np.dot(n, n))
 | |
|             n *= -np.sign(n[2])
 | |
| 
 | |
|             d = np.dot(n, pz - x3)
 | |
| 
 | |
|             assert_almost_equal(dist[j], d)
 | |
| 
 | |
|     def test_convex_hull(self):
 | |
|         # Simple check that the convex hull seems to works
 | |
|         points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
 | |
|         tri = qhull.Delaunay(points)
 | |
| 
 | |
|         # +---+
 | |
|         # |\ 0|
 | |
|         # | \ |
 | |
|         # |1 \|
 | |
|         # +---+
 | |
| 
 | |
|         assert_equal(tri.convex_hull, [[3, 2], [1, 2], [1, 0], [3, 0]])
 | |
| 
 | |
|     def test_volume_area(self):
 | |
|         #Basic check that we get back the correct volume and area for a cube
 | |
|         points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
 | |
|                            (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
 | |
|         hull = qhull.ConvexHull(points)
 | |
| 
 | |
|         assert_allclose(hull.volume, 1., rtol=1e-14,
 | |
|                         err_msg="Volume of cube is incorrect")
 | |
|         assert_allclose(hull.area, 6., rtol=1e-14,
 | |
|                         err_msg="Area of cube is incorrect")
 | |
| 
 | |
|     def test_random_volume_area(self):
 | |
|         #Test that the results for a random 10-point convex are
 | |
|         #coherent with the output of qconvex Qt s FA
 | |
|         points = np.array([(0.362568364506, 0.472712355305, 0.347003084477),
 | |
|                            (0.733731893414, 0.634480295684, 0.950513180209),
 | |
|                            (0.511239955611, 0.876839441267, 0.418047827863),
 | |
|                            (0.0765906233393, 0.527373281342, 0.6509863541),
 | |
|                            (0.146694972056, 0.596725793348, 0.894860986685),
 | |
|                            (0.513808585741, 0.069576205858, 0.530890338876),
 | |
|                            (0.512343805118, 0.663537132612, 0.037689295973),
 | |
|                            (0.47282965018, 0.462176697655, 0.14061843691),
 | |
|                            (0.240584597123, 0.778660020591, 0.722913476339),
 | |
|                            (0.951271745935, 0.967000673944, 0.890661319684)])
 | |
| 
 | |
|         hull = qhull.ConvexHull(points)
 | |
|         assert_allclose(hull.volume, 0.14562013, rtol=1e-07,
 | |
|                         err_msg="Volume of random polyhedron is incorrect")
 | |
|         assert_allclose(hull.area, 1.6670425, rtol=1e-07,
 | |
|                         err_msg="Area of random polyhedron is incorrect")
 | |
| 
 | |
|     def test_incremental_volume_area_random_input(self):
 | |
|         """Test that incremental mode gives the same volume/area as
 | |
|         non-incremental mode and incremental mode with restart"""
 | |
|         nr_points = 20
 | |
|         dim = 3
 | |
|         points = np.random.random((nr_points, dim))
 | |
|         inc_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
 | |
|         inc_restart_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
 | |
|         for i in range(dim+1, nr_points):
 | |
|             hull = qhull.ConvexHull(points[:i+1, :])
 | |
|             inc_hull.add_points(points[i:i+1, :])
 | |
|             inc_restart_hull.add_points(points[i:i+1, :], restart=True)
 | |
|             assert_allclose(hull.volume, inc_hull.volume, rtol=1e-7)
 | |
|             assert_allclose(hull.volume, inc_restart_hull.volume, rtol=1e-7)
 | |
|             assert_allclose(hull.area, inc_hull.area, rtol=1e-7)
 | |
|             assert_allclose(hull.area, inc_restart_hull.area, rtol=1e-7)
 | |
| 
 | |
|     def _check_barycentric_transforms(self, tri, err_msg="",
 | |
|                                       unit_cube=False,
 | |
|                                       unit_cube_tol=0):
 | |
|         """Check that a triangulation has reasonable barycentric transforms"""
 | |
|         vertices = tri.points[tri.simplices]
 | |
|         sc = 1/(tri.ndim + 1.0)
 | |
|         centroids = vertices.sum(axis=1) * sc
 | |
| 
 | |
|         # Either: (i) the simplex has a `nan` barycentric transform,
 | |
|         # or, (ii) the centroid is in the simplex
 | |
| 
 | |
|         def barycentric_transform(tr, x):
 | |
|             r = tr[:,-1,:]
 | |
|             Tinv = tr[:,:-1,:]
 | |
|             return np.einsum('ijk,ik->ij', Tinv, x - r)
 | |
| 
 | |
|         eps = np.finfo(float).eps
 | |
| 
 | |
|         c = barycentric_transform(tri.transform, centroids)
 | |
|         with np.errstate(invalid="ignore"):
 | |
|             ok = np.isnan(c).all(axis=1) | (abs(c - sc)/sc < 0.1).all(axis=1)
 | |
| 
 | |
|         assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
 | |
| 
 | |
|         # Invalid simplices must be (nearly) zero volume
 | |
|         q = vertices[:,:-1,:] - vertices[:,-1,None,:]
 | |
|         volume = np.array([np.linalg.det(q[k,:,:])
 | |
|                            for k in range(tri.nsimplex)])
 | |
|         ok = np.isfinite(tri.transform[:,0,0]) | (volume < np.sqrt(eps))
 | |
|         assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
 | |
| 
 | |
|         # Also, find_simplex for the centroid should end up in some
 | |
|         # simplex for the non-degenerate cases
 | |
|         j = tri.find_simplex(centroids)
 | |
|         ok = (j != -1) | np.isnan(tri.transform[:,0,0])
 | |
|         assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
 | |
| 
 | |
|         if unit_cube:
 | |
|             # If in unit cube, no interior point should be marked out of hull
 | |
|             at_boundary = (centroids <= unit_cube_tol).any(axis=1)
 | |
|             at_boundary |= (centroids >= 1 - unit_cube_tol).any(axis=1)
 | |
| 
 | |
|             ok = (j != -1) | at_boundary
 | |
|             assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
 | |
| 
 | |
|     @pytest.mark.fail_slow(10)
 | |
|     def test_degenerate_barycentric_transforms(self):
 | |
|         # The triangulation should not produce invalid barycentric
 | |
|         # transforms that stump the simplex finding
 | |
|         data = np.load(os.path.join(os.path.dirname(__file__), 'data',
 | |
|                                     'degenerate_pointset.npz'))
 | |
|         points = data['c']
 | |
|         data.close()
 | |
| 
 | |
|         tri = qhull.Delaunay(points)
 | |
| 
 | |
|         # Check that there are not too many invalid simplices
 | |
|         bad_count = np.isnan(tri.transform[:,0,0]).sum()
 | |
|         assert_(bad_count < 23, bad_count)
 | |
| 
 | |
|         # Check the transforms
 | |
|         self._check_barycentric_transforms(tri)
 | |
| 
 | |
|     @pytest.mark.slow
 | |
|     @pytest.mark.fail_slow(20)
 | |
|     # OK per https://github.com/scipy/scipy/pull/20487#discussion_r1572684869
 | |
|     def test_more_barycentric_transforms(self):
 | |
|         # Triangulate some "nasty" grids
 | |
| 
 | |
|         eps = np.finfo(float).eps
 | |
| 
 | |
|         npoints = {2: 70, 3: 11, 4: 5, 5: 3}
 | |
| 
 | |
|         for ndim in range(2, 6):
 | |
|             # Generate an uniform grid in n-d unit cube
 | |
|             x = np.linspace(0, 1, npoints[ndim])
 | |
|             grid = np.c_[
 | |
|                 list(map(np.ravel, np.broadcast_arrays(*np.ix_(*([x]*ndim)))))
 | |
|             ].T
 | |
| 
 | |
|             err_msg = f"ndim={ndim}"
 | |
| 
 | |
|             # Check using regular grid
 | |
|             tri = qhull.Delaunay(grid)
 | |
|             self._check_barycentric_transforms(tri, err_msg=err_msg,
 | |
|                                                unit_cube=True)
 | |
| 
 | |
|             # Check with eps-perturbations
 | |
|             np.random.seed(1234)
 | |
|             m = (np.random.rand(grid.shape[0]) < 0.2)
 | |
|             grid[m,:] += 2*eps*(np.random.rand(*grid[m,:].shape) - 0.5)
 | |
| 
 | |
|             tri = qhull.Delaunay(grid)
 | |
|             self._check_barycentric_transforms(tri, err_msg=err_msg,
 | |
|                                                unit_cube=True,
 | |
|                                                unit_cube_tol=2*eps)
 | |
| 
 | |
|             # Check with duplicated data
 | |
|             tri = qhull.Delaunay(np.r_[grid, grid])
 | |
|             self._check_barycentric_transforms(tri, err_msg=err_msg,
 | |
|                                                unit_cube=True,
 | |
|                                                unit_cube_tol=2*eps)
 | |
| 
 | |
| 
 | |
| class TestVertexNeighborVertices:
 | |
|     def _check(self, tri):
 | |
|         expected = [set() for j in range(tri.points.shape[0])]
 | |
|         for s in tri.simplices:
 | |
|             for a in s:
 | |
|                 for b in s:
 | |
|                     if a != b:
 | |
|                         expected[a].add(b)
 | |
| 
 | |
|         indptr, indices = tri.vertex_neighbor_vertices
 | |
| 
 | |
|         got = [set(map(int, indices[indptr[j]:indptr[j+1]]))
 | |
|                for j in range(tri.points.shape[0])]
 | |
| 
 | |
|         assert_equal(got, expected, err_msg=f"{got!r} != {expected!r}")
 | |
| 
 | |
|     def test_triangle(self):
 | |
|         points = np.array([(0,0), (0,1), (1,0)], dtype=np.float64)
 | |
|         tri = qhull.Delaunay(points)
 | |
|         self._check(tri)
 | |
| 
 | |
|     def test_rectangle(self):
 | |
|         points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
 | |
|         tri = qhull.Delaunay(points)
 | |
|         self._check(tri)
 | |
| 
 | |
|     def test_complicated(self):
 | |
|         points = np.array([(0,0), (0,1), (1,1), (1,0),
 | |
|                            (0.5, 0.5), (0.9, 0.5)], dtype=np.float64)
 | |
|         tri = qhull.Delaunay(points)
 | |
|         self._check(tri)
 | |
| 
 | |
| 
 | |
| class TestDelaunay:
 | |
|     """
 | |
|     Check that triangulation works.
 | |
| 
 | |
|     """
 | |
|     def test_masked_array_fails(self):
 | |
|         masked_array = np.ma.masked_all(1)
 | |
|         assert_raises(ValueError, qhull.Delaunay, masked_array)
 | |
| 
 | |
|     # Shouldn't be inherently unsafe; retry with cpython 3.14 once traceback
 | |
|     # thread safety issues are fixed (also goes for other test with same name
 | |
|     # further down)
 | |
|     @pytest.mark.thread_unsafe
 | |
|     def test_array_with_nans_fails(self):
 | |
|         points_with_nan = np.array([(0,0), (0,1), (1,1), (1,np.nan)], dtype=np.float64)
 | |
|         assert_raises(ValueError, qhull.Delaunay, points_with_nan)
 | |
| 
 | |
|     def test_nd_simplex(self):
 | |
|         # simple smoke test: triangulate a n-dimensional simplex
 | |
|         for nd in range(2, 8):
 | |
|             points = np.zeros((nd+1, nd))
 | |
|             for j in range(nd):
 | |
|                 points[j,j] = 1.0
 | |
|             points[-1,:] = 1.0
 | |
| 
 | |
|             tri = qhull.Delaunay(points)
 | |
| 
 | |
|             tri.simplices.sort()
 | |
| 
 | |
|             assert_equal(tri.simplices, np.arange(nd+1, dtype=int)[None, :])
 | |
|             assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=int)[None,:])
 | |
| 
 | |
|     def test_2d_square(self):
 | |
|         # simple smoke test: 2d square
 | |
|         points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
 | |
|         tri = qhull.Delaunay(points)
 | |
| 
 | |
|         assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]])
 | |
|         assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]])
 | |
| 
 | |
|     def test_duplicate_points(self):
 | |
|         x = np.array([0, 1, 0, 1], dtype=np.float64)
 | |
|         y = np.array([0, 0, 1, 1], dtype=np.float64)
 | |
| 
 | |
|         xp = np.r_[x, x]
 | |
|         yp = np.r_[y, y]
 | |
| 
 | |
|         # shouldn't fail on duplicate points
 | |
|         qhull.Delaunay(np.c_[x, y])
 | |
|         qhull.Delaunay(np.c_[xp, yp])
 | |
| 
 | |
|     def test_pathological(self):
 | |
|         # both should succeed
 | |
|         points = DATASETS['pathological-1']
 | |
|         tri = qhull.Delaunay(points)
 | |
|         assert_equal(tri.points[tri.simplices].max(), points.max())
 | |
|         assert_equal(tri.points[tri.simplices].min(), points.min())
 | |
| 
 | |
|         points = DATASETS['pathological-2']
 | |
|         tri = qhull.Delaunay(points)
 | |
|         assert_equal(tri.points[tri.simplices].max(), points.max())
 | |
|         assert_equal(tri.points[tri.simplices].min(), points.min())
 | |
| 
 | |
|     def test_joggle(self):
 | |
|         # Check that the option QJ indeed guarantees that all input points
 | |
|         # occur as vertices of the triangulation
 | |
| 
 | |
|         points = np.random.rand(10, 2)
 | |
|         points = np.r_[points, points]  # duplicate input data
 | |
| 
 | |
|         tri = qhull.Delaunay(points, qhull_options="QJ Qbb Pp")
 | |
|         assert_array_equal(np.unique(tri.simplices.ravel()),
 | |
|                            np.arange(len(points)))
 | |
| 
 | |
|     def test_coplanar(self):
 | |
|         # Check that the coplanar point output option indeed works
 | |
|         points = np.random.rand(10, 2)
 | |
|         points = np.r_[points, points]  # duplicate input data
 | |
| 
 | |
|         tri = qhull.Delaunay(points)
 | |
| 
 | |
|         assert_(len(np.unique(tri.simplices.ravel())) == len(points)//2)
 | |
|         assert_(len(tri.coplanar) == len(points)//2)
 | |
| 
 | |
|         assert_(len(np.unique(tri.coplanar[:,2])) == len(points)//2)
 | |
| 
 | |
|         assert_(np.all(tri.vertex_to_simplex >= 0))
 | |
| 
 | |
|     def test_furthest_site(self):
 | |
|         points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
 | |
|         tri = qhull.Delaunay(points, furthest_site=True)
 | |
| 
 | |
|         expected = np.array([(1, 4, 0), (4, 2, 0)])  # from Qhull
 | |
|         assert_array_equal(tri.simplices, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
 | |
|     def test_incremental(self, name):
 | |
|         # Test incremental construction of the triangulation
 | |
| 
 | |
|         chunks, opts = INCREMENTAL_DATASETS[name]
 | |
|         points = np.concatenate(chunks, axis=0)
 | |
| 
 | |
|         obj = qhull.Delaunay(chunks[0], incremental=True,
 | |
|                              qhull_options=opts)
 | |
|         for chunk in chunks[1:]:
 | |
|             obj.add_points(chunk)
 | |
| 
 | |
|         obj2 = qhull.Delaunay(points)
 | |
| 
 | |
|         obj3 = qhull.Delaunay(chunks[0], incremental=True,
 | |
|                               qhull_options=opts)
 | |
|         if len(chunks) > 1:
 | |
|             obj3.add_points(np.concatenate(chunks[1:], axis=0),
 | |
|                             restart=True)
 | |
| 
 | |
|         # Check that the incremental mode agrees with upfront mode
 | |
|         if name.startswith('pathological'):
 | |
|             # XXX: These produce valid but different triangulations.
 | |
|             #      They look OK when plotted, but how to check them?
 | |
| 
 | |
|             assert_array_equal(np.unique(obj.simplices.ravel()),
 | |
|                                np.arange(points.shape[0]))
 | |
|             assert_array_equal(np.unique(obj2.simplices.ravel()),
 | |
|                                np.arange(points.shape[0]))
 | |
|         else:
 | |
|             assert_unordered_tuple_list_equal(obj.simplices, obj2.simplices,
 | |
|                                               tpl=sorted_tuple)
 | |
| 
 | |
|         assert_unordered_tuple_list_equal(obj2.simplices, obj3.simplices,
 | |
|                                           tpl=sorted_tuple)
 | |
| 
 | |
| 
 | |
| def assert_hulls_equal(points, facets_1, facets_2):
 | |
|     # Check that two convex hulls constructed from the same point set
 | |
|     # are equal
 | |
| 
 | |
|     facets_1 = set(map(sorted_tuple, facets_1))
 | |
|     facets_2 = set(map(sorted_tuple, facets_2))
 | |
| 
 | |
|     if facets_1 != facets_2 and points.shape[1] == 2:
 | |
|         # The direct check fails for the pathological cases
 | |
|         # --- then the convex hull from Delaunay differs (due
 | |
|         # to rounding error etc.) from the hull computed
 | |
|         # otherwise, by the question whether (tricoplanar)
 | |
|         # points that lie almost exactly on the hull are
 | |
|         # included as vertices of the hull or not.
 | |
|         #
 | |
|         # So we check the result, and accept it if the Delaunay
 | |
|         # hull line segments are a subset of the usual hull.
 | |
| 
 | |
|         eps = 1000 * np.finfo(float).eps
 | |
| 
 | |
|         for a, b in facets_1:
 | |
|             for ap, bp in facets_2:
 | |
|                 t = points[bp] - points[ap]
 | |
|                 t /= np.linalg.norm(t)       # tangent
 | |
|                 n = np.array([-t[1], t[0]])  # normal
 | |
| 
 | |
|                 # check that the two line segments are parallel
 | |
|                 # to the same line
 | |
|                 c1 = np.dot(n, points[b] - points[ap])
 | |
|                 c2 = np.dot(n, points[a] - points[ap])
 | |
|                 if not np.allclose(np.dot(c1, n), 0):
 | |
|                     continue
 | |
|                 if not np.allclose(np.dot(c2, n), 0):
 | |
|                     continue
 | |
| 
 | |
|                 # Check that the segment (a, b) is contained in (ap, bp)
 | |
|                 c1 = np.dot(t, points[a] - points[ap])
 | |
|                 c2 = np.dot(t, points[b] - points[ap])
 | |
|                 c3 = np.dot(t, points[bp] - points[ap])
 | |
|                 if c1 < -eps or c1 > c3 + eps:
 | |
|                     continue
 | |
|                 if c2 < -eps or c2 > c3 + eps:
 | |
|                     continue
 | |
| 
 | |
|                 # OK:
 | |
|                 break
 | |
|             else:
 | |
|                 raise AssertionError("comparison fails")
 | |
| 
 | |
|         # it was OK
 | |
|         return
 | |
| 
 | |
|     assert_equal(facets_1, facets_2)
 | |
| 
 | |
| 
 | |
| class TestConvexHull:
 | |
|     def test_masked_array_fails(self):
 | |
|         masked_array = np.ma.masked_all(1)
 | |
|         assert_raises(ValueError, qhull.ConvexHull, masked_array)
 | |
| 
 | |
|     @pytest.mark.thread_unsafe
 | |
|     def test_array_with_nans_fails(self):
 | |
|         points_with_nan = np.array([(0,0), (1,1), (2,np.nan)], dtype=np.float64)
 | |
|         assert_raises(ValueError, qhull.ConvexHull, points_with_nan)
 | |
| 
 | |
|     @pytest.mark.parametrize("name", sorted(DATASETS))
 | |
|     def test_hull_consistency_tri(self, name):
 | |
|         # Check that a convex hull returned by qhull in ndim
 | |
|         # and the hull constructed from ndim delaunay agree
 | |
|         points = DATASETS[name]
 | |
| 
 | |
|         tri = qhull.Delaunay(points)
 | |
|         hull = qhull.ConvexHull(points)
 | |
| 
 | |
|         assert_hulls_equal(points, tri.convex_hull, hull.simplices)
 | |
| 
 | |
|         # Check that the hull extremes are as expected
 | |
|         if points.shape[1] == 2:
 | |
|             assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
 | |
|         else:
 | |
|             assert_equal(np.unique(hull.simplices), hull.vertices)
 | |
| 
 | |
|     @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
 | |
|     def test_incremental(self, name):
 | |
|         # Test incremental construction of the convex hull
 | |
|         chunks, _ = INCREMENTAL_DATASETS[name]
 | |
|         points = np.concatenate(chunks, axis=0)
 | |
| 
 | |
|         obj = qhull.ConvexHull(chunks[0], incremental=True)
 | |
|         for chunk in chunks[1:]:
 | |
|             obj.add_points(chunk)
 | |
| 
 | |
|         obj2 = qhull.ConvexHull(points)
 | |
| 
 | |
|         obj3 = qhull.ConvexHull(chunks[0], incremental=True)
 | |
|         if len(chunks) > 1:
 | |
|             obj3.add_points(np.concatenate(chunks[1:], axis=0),
 | |
|                             restart=True)
 | |
| 
 | |
|         # Check that the incremental mode agrees with upfront mode
 | |
|         assert_hulls_equal(points, obj.simplices, obj2.simplices)
 | |
|         assert_hulls_equal(points, obj.simplices, obj3.simplices)
 | |
| 
 | |
|     def test_vertices_2d(self):
 | |
|         # The vertices should be in counterclockwise order in 2-D
 | |
|         np.random.seed(1234)
 | |
|         points = np.random.rand(30, 2)
 | |
| 
 | |
|         hull = qhull.ConvexHull(points)
 | |
|         assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
 | |
| 
 | |
|         # Check counterclockwiseness
 | |
|         x, y = hull.points[hull.vertices].T
 | |
|         angle = np.arctan2(y - y.mean(), x - x.mean())
 | |
|         assert_(np.all(np.diff(np.unwrap(angle)) > 0))
 | |
| 
 | |
|     def test_volume_area(self):
 | |
|         # Basic check that we get back the correct volume and area for a cube
 | |
|         points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
 | |
|                            (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
 | |
|         tri = qhull.ConvexHull(points)
 | |
| 
 | |
|         assert_allclose(tri.volume, 1., rtol=1e-14)
 | |
|         assert_allclose(tri.area, 6., rtol=1e-14)
 | |
| 
 | |
|     @pytest.mark.parametrize("incremental", [False, True])
 | |
|     def test_good2d(self, incremental):
 | |
|         # Make sure the QGn option gives the correct value of "good".
 | |
|         points = np.array([[0.2, 0.2],
 | |
|                            [0.2, 0.4],
 | |
|                            [0.4, 0.4],
 | |
|                            [0.4, 0.2],
 | |
|                            [0.3, 0.6]])
 | |
|         hull = qhull.ConvexHull(points=points,
 | |
|                                 incremental=incremental,
 | |
|                                 qhull_options='QG4')
 | |
|         expected = np.array([False, True, False, False], dtype=bool)
 | |
|         actual = hull.good
 | |
|         assert_equal(actual, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("visibility", [
 | |
|                               "QG4",  # visible=True
 | |
|                               "QG-4",  # visible=False
 | |
|                               ])
 | |
|     @pytest.mark.parametrize("new_gen, expected", [
 | |
|         # add generator that places QG4 inside hull
 | |
|         # so all facets are invisible
 | |
|         (np.array([[0.3, 0.7]]),
 | |
|          np.array([False, False, False, False, False], dtype=bool)),
 | |
|         # adding a generator on the opposite side of the square
 | |
|         # should preserve the single visible facet & add one invisible
 | |
|         # facet
 | |
|         (np.array([[0.3, -0.7]]),
 | |
|          np.array([False, True, False, False, False], dtype=bool)),
 | |
|         # split the visible facet on top of the square into two
 | |
|         # visible facets, with visibility at the end of the array
 | |
|         # because add_points concatenates
 | |
|         (np.array([[0.3, 0.41]]),
 | |
|          np.array([False, False, False, True, True], dtype=bool)),
 | |
|         # with our current Qhull options, coplanarity will not count
 | |
|         # for visibility; this case shifts one visible & one invisible
 | |
|         # facet & adds a coplanar facet
 | |
|         # simplex at index position 2 is the shifted visible facet
 | |
|         # the final simplex is the coplanar facet
 | |
|         (np.array([[0.5, 0.6], [0.6, 0.6]]),
 | |
|          np.array([False, False, True, False, False], dtype=bool)),
 | |
|         # place the new generator such that it envelops the query
 | |
|         # point within the convex hull, but only just barely within
 | |
|         # the double precision limit
 | |
|         # NOTE: testing exact degeneracy is less predictable than this
 | |
|         # scenario, perhaps because of the default Qt option we have
 | |
|         # enabled for Qhull to handle precision matters
 | |
|         (np.array([[0.3, 0.6 + 1e-16]]),
 | |
|          np.array([False, False, False, False, False], dtype=bool)),
 | |
|         ])
 | |
|     def test_good2d_incremental_changes(self, new_gen, expected,
 | |
|                                         visibility):
 | |
|         # use the usual square convex hull
 | |
|         # generators from test_good2d
 | |
|         points = np.array([[0.2, 0.2],
 | |
|                            [0.2, 0.4],
 | |
|                            [0.4, 0.4],
 | |
|                            [0.4, 0.2],
 | |
|                            [0.3, 0.6]])
 | |
|         hull = qhull.ConvexHull(points=points,
 | |
|                                 incremental=True,
 | |
|                                 qhull_options=visibility)
 | |
|         hull.add_points(new_gen)
 | |
|         actual = hull.good
 | |
|         if '-' in visibility:
 | |
|             expected = np.invert(expected)
 | |
|         assert_equal(actual, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("incremental", [False, True])
 | |
|     def test_good2d_no_option(self, incremental):
 | |
|         # handle case where good attribute doesn't exist
 | |
|         # because Qgn or Qg-n wasn't specified
 | |
|         points = np.array([[0.2, 0.2],
 | |
|                            [0.2, 0.4],
 | |
|                            [0.4, 0.4],
 | |
|                            [0.4, 0.2],
 | |
|                            [0.3, 0.6]])
 | |
|         hull = qhull.ConvexHull(points=points,
 | |
|                                 incremental=incremental)
 | |
|         actual = hull.good
 | |
|         assert actual is None
 | |
|         # preserve None after incremental addition
 | |
|         if incremental:
 | |
|             hull.add_points(np.zeros((1, 2)))
 | |
|             actual = hull.good
 | |
|             assert actual is None
 | |
| 
 | |
|     @pytest.mark.parametrize("incremental", [False, True])
 | |
|     def test_good2d_inside(self, incremental):
 | |
|         # Make sure the QGn option gives the correct value of "good".
 | |
|         # When point n is inside the convex hull of the rest, good is
 | |
|         # all False.
 | |
|         points = np.array([[0.2, 0.2],
 | |
|                            [0.2, 0.4],
 | |
|                            [0.4, 0.4],
 | |
|                            [0.4, 0.2],
 | |
|                            [0.3, 0.3]])
 | |
|         hull = qhull.ConvexHull(points=points,
 | |
|                                 incremental=incremental,
 | |
|                                 qhull_options='QG4')
 | |
|         expected = np.array([False, False, False, False], dtype=bool)
 | |
|         actual = hull.good
 | |
|         assert_equal(actual, expected)
 | |
| 
 | |
|     @pytest.mark.parametrize("incremental", [False, True])
 | |
|     def test_good3d(self, incremental):
 | |
|         # Make sure the QGn option gives the correct value of "good"
 | |
|         # for a 3d figure
 | |
|         points = np.array([[0.0, 0.0, 0.0],
 | |
|                            [0.90029516, -0.39187448, 0.18948093],
 | |
|                            [0.48676420, -0.72627633, 0.48536925],
 | |
|                            [0.57651530, -0.81179274, -0.09285832],
 | |
|                            [0.67846893, -0.71119562, 0.18406710]])
 | |
|         hull = qhull.ConvexHull(points=points,
 | |
|                                 incremental=incremental,
 | |
|                                 qhull_options='QG0')
 | |
|         expected = np.array([True, False, False, False], dtype=bool)
 | |
|         assert_equal(hull.good, expected)
 | |
| 
 | |
| class TestVoronoi:
 | |
| 
 | |
|     @pytest.mark.parametrize("qhull_opts, extra_pts", [
 | |
|         # option Qz (default for SciPy) will add
 | |
|         # an extra point at infinity
 | |
|         ("Qbb Qc Qz", 1),
 | |
|         ("Qbb Qc", 0),
 | |
|     ])
 | |
|     @pytest.mark.parametrize("n_pts", [50, 100])
 | |
|     @pytest.mark.parametrize("ndim", [2, 3])
 | |
|     def test_point_region_structure(self,
 | |
|                                     qhull_opts,
 | |
|                                     n_pts,
 | |
|                                     extra_pts,
 | |
|                                     ndim):
 | |
|         # see gh-16773
 | |
|         rng = np.random.default_rng(7790)
 | |
|         points = rng.random((n_pts, ndim))
 | |
|         vor = Voronoi(points, qhull_options=qhull_opts)
 | |
|         pt_region = vor.point_region
 | |
|         assert pt_region.max() == n_pts - 1 + extra_pts
 | |
|         assert pt_region.size == len(vor.regions) - extra_pts
 | |
|         assert len(vor.regions) == n_pts + extra_pts
 | |
|         assert vor.points.shape[0] == n_pts
 | |
|         # if there is an empty sublist in the Voronoi
 | |
|         # regions data structure, it should never be
 | |
|         # indexed because it corresponds to an internally
 | |
|         # added point at infinity and is not a member of the
 | |
|         # generators (input points)
 | |
|         if extra_pts:
 | |
|             sublens = [len(x) for x in vor.regions]
 | |
|             # only one point at infinity (empty region)
 | |
|             # is allowed
 | |
|             assert sublens.count(0) == 1
 | |
|             assert sublens.index(0) not in pt_region
 | |
| 
 | |
|     def test_masked_array_fails(self):
 | |
|         masked_array = np.ma.masked_all(1)
 | |
|         assert_raises(ValueError, qhull.Voronoi, masked_array)
 | |
| 
 | |
|     def test_simple(self):
 | |
|         # Simple case with known Voronoi diagram
 | |
|         points = [(0, 0), (0, 1), (0, 2),
 | |
|                   (1, 0), (1, 1), (1, 2),
 | |
|                   (2, 0), (2, 1), (2, 2)]
 | |
| 
 | |
|         # qhull v o Fv Qbb Qc Qz < dat
 | |
|         output = """
 | |
|         2
 | |
|         5 10 1
 | |
|         -10.101 -10.101
 | |
|            0.5    0.5
 | |
|            0.5    1.5
 | |
|            1.5    0.5
 | |
|            1.5    1.5
 | |
|         2 0 1
 | |
|         3 2 0 1
 | |
|         2 0 2
 | |
|         3 3 0 1
 | |
|         4 1 2 4 3
 | |
|         3 4 0 2
 | |
|         2 0 3
 | |
|         3 4 0 3
 | |
|         2 0 4
 | |
|         0
 | |
|         12
 | |
|         4 0 3 0 1
 | |
|         4 0 1 0 1
 | |
|         4 1 4 1 2
 | |
|         4 1 2 0 2
 | |
|         4 2 5 0 2
 | |
|         4 3 4 1 3
 | |
|         4 3 6 0 3
 | |
|         4 4 5 2 4
 | |
|         4 4 7 3 4
 | |
|         4 5 8 0 4
 | |
|         4 6 7 0 3
 | |
|         4 7 8 0 4
 | |
|         """
 | |
|         self._compare_qvoronoi(points, output)
 | |
| 
 | |
|     def _compare_qvoronoi(self, points, output, **kw):
 | |
|         """Compare to output from 'qvoronoi o Fv < data' to Voronoi()"""
 | |
| 
 | |
|         # Parse output
 | |
|         output = [list(map(float, x.split())) for x in output.strip().splitlines()]
 | |
|         nvertex = int(output[1][0])
 | |
|         vertices = list(map(tuple, output[3:2+nvertex]))  # exclude inf
 | |
|         nregion = int(output[1][1])
 | |
|         regions = [[int(y)-1 for y in x[1:]]
 | |
|                    for x in output[2+nvertex:2+nvertex+nregion]]
 | |
|         ridge_points = [[int(y) for y in x[1:3]]
 | |
|                         for x in output[3+nvertex+nregion:]]
 | |
|         ridge_vertices = [[int(y)-1 for y in x[3:]]
 | |
|                           for x in output[3+nvertex+nregion:]]
 | |
| 
 | |
|         # Compare results
 | |
|         vor = qhull.Voronoi(points, **kw)
 | |
| 
 | |
|         def sorttuple(x):
 | |
|             return tuple(sorted(x))
 | |
| 
 | |
|         assert_allclose(vor.vertices, vertices)
 | |
|         assert_equal(set(map(tuple, vor.regions)),
 | |
|                      set(map(tuple, regions)))
 | |
| 
 | |
|         p1 = list(zip(list(map(sorttuple, ridge_points)),
 | |
|                       list(map(sorttuple, ridge_vertices))))
 | |
|         p2 = list(zip(list(map(sorttuple, vor.ridge_points.tolist())),
 | |
|                       list(map(sorttuple, vor.ridge_vertices))))
 | |
|         p1.sort()
 | |
|         p2.sort()
 | |
| 
 | |
|         assert_equal(p1, p2)
 | |
| 
 | |
|     @pytest.mark.parametrize("name", sorted(DATASETS))
 | |
|     def test_ridges(self, name):
 | |
|         # Check that the ridges computed by Voronoi indeed separate
 | |
|         # the regions of nearest neighborhood, by comparing the result
 | |
|         # to KDTree.
 | |
| 
 | |
|         points = DATASETS[name]
 | |
| 
 | |
|         tree = KDTree(points)
 | |
|         vor = qhull.Voronoi(points)
 | |
| 
 | |
|         for p, v in vor.ridge_dict.items():
 | |
|             # consider only finite ridges
 | |
|             if not np.all(np.asarray(v) >= 0):
 | |
|                 continue
 | |
| 
 | |
|             ridge_midpoint = vor.vertices[v].mean(axis=0)
 | |
|             d = 1e-6 * (points[p[0]] - ridge_midpoint)
 | |
| 
 | |
|             dist, k = tree.query(ridge_midpoint + d, k=1)
 | |
|             assert_equal(k, p[0])
 | |
| 
 | |
|             dist, k = tree.query(ridge_midpoint - d, k=1)
 | |
|             assert_equal(k, p[1])
 | |
| 
 | |
|     def test_furthest_site(self):
 | |
|         points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
 | |
| 
 | |
|         # qhull v o Fv Qbb Qc Qu < dat
 | |
|         output = """
 | |
|         2
 | |
|         3 5 1
 | |
|         -10.101 -10.101
 | |
|         0.6000000000000001    0.5
 | |
|            0.5 0.6000000000000001
 | |
|         3 0 2 1
 | |
|         2 0 1
 | |
|         2 0 2
 | |
|         0
 | |
|         3 0 2 1
 | |
|         5
 | |
|         4 0 2 0 2
 | |
|         4 0 4 1 2
 | |
|         4 0 1 0 1
 | |
|         4 1 4 0 1
 | |
|         4 2 4 0 2
 | |
|         """
 | |
|         self._compare_qvoronoi(points, output, furthest_site=True)
 | |
| 
 | |
|     def test_furthest_site_flag(self):
 | |
|         points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
 | |
| 
 | |
|         vor = Voronoi(points)
 | |
|         assert_equal(vor.furthest_site,False)
 | |
|         vor = Voronoi(points,furthest_site=True)
 | |
|         assert_equal(vor.furthest_site,True)
 | |
| 
 | |
|     @pytest.mark.fail_slow(10)
 | |
|     @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
 | |
|     def test_incremental(self, name):
 | |
|         # Test incremental construction of the triangulation
 | |
| 
 | |
|         if INCREMENTAL_DATASETS[name][0][0].shape[1] > 3:
 | |
|             # too slow (testing of the result --- qhull is still fast)
 | |
|             return
 | |
| 
 | |
|         chunks, opts = INCREMENTAL_DATASETS[name]
 | |
|         points = np.concatenate(chunks, axis=0)
 | |
| 
 | |
|         obj = qhull.Voronoi(chunks[0], incremental=True,
 | |
|                              qhull_options=opts)
 | |
|         for chunk in chunks[1:]:
 | |
|             obj.add_points(chunk)
 | |
| 
 | |
|         obj2 = qhull.Voronoi(points)
 | |
| 
 | |
|         obj3 = qhull.Voronoi(chunks[0], incremental=True,
 | |
|                              qhull_options=opts)
 | |
|         if len(chunks) > 1:
 | |
|             obj3.add_points(np.concatenate(chunks[1:], axis=0),
 | |
|                             restart=True)
 | |
| 
 | |
|         # -- Check that the incremental mode agrees with upfront mode
 | |
|         assert_equal(len(obj.point_region), len(obj2.point_region))
 | |
|         assert_equal(len(obj.point_region), len(obj3.point_region))
 | |
| 
 | |
|         # The vertices may be in different order or duplicated in
 | |
|         # the incremental map
 | |
|         for objx in obj, obj3:
 | |
|             vertex_map = {-1: -1}
 | |
|             for i, v in enumerate(objx.vertices):
 | |
|                 for j, v2 in enumerate(obj2.vertices):
 | |
|                     if np.allclose(v, v2):
 | |
|                         vertex_map[i] = j
 | |
| 
 | |
|             def remap(x):
 | |
|                 if hasattr(x, '__len__'):
 | |
|                     return tuple({remap(y) for y in x})
 | |
|                 try:
 | |
|                     return vertex_map[x]
 | |
|                 except KeyError as e:
 | |
|                     message = (f"incremental result has spurious vertex "
 | |
|                                f"at {objx.vertices[x]!r}")
 | |
|                     raise AssertionError(message) from e
 | |
| 
 | |
|             def simplified(x):
 | |
|                 items = set(map(sorted_tuple, x))
 | |
|                 if () in items:
 | |
|                     items.remove(())
 | |
|                 items = [x for x in items if len(x) > 1]
 | |
|                 items.sort()
 | |
|                 return items
 | |
| 
 | |
|             assert_equal(
 | |
|                 simplified(remap(objx.regions)),
 | |
|                 simplified(obj2.regions)
 | |
|                 )
 | |
|             assert_equal(
 | |
|                 simplified(remap(objx.ridge_vertices)),
 | |
|                 simplified(obj2.ridge_vertices)
 | |
|                 )
 | |
| 
 | |
|             # XXX: compare ridge_points --- not clear exactly how to do this
 | |
| 
 | |
| 
 | |
| class Test_HalfspaceIntersection:
 | |
|     def assert_unordered_allclose(self, arr1, arr2, rtol=1e-7):
 | |
|         """Check that every line in arr1 is only once in arr2"""
 | |
|         assert_equal(arr1.shape, arr2.shape)
 | |
| 
 | |
|         truths = np.zeros((arr1.shape[0],), dtype=bool)
 | |
|         for l1 in arr1:
 | |
|             indexes = np.nonzero((abs(arr2 - l1) < rtol).all(axis=1))[0]
 | |
|             assert_equal(indexes.shape, (1,))
 | |
|             truths[indexes[0]] = True
 | |
|         assert_(truths.all())
 | |
| 
 | |
|     @pytest.mark.parametrize("dt", [np.float64, int])
 | |
|     def test_cube_halfspace_intersection(self, dt):
 | |
|         halfspaces = np.array([[-1, 0, 0],
 | |
|                                [0, -1, 0],
 | |
|                                [1, 0, -2],
 | |
|                                [0, 1, -2]], dtype=dt)
 | |
|         feasible_point = np.array([1, 1], dtype=dt)
 | |
| 
 | |
|         points = np.array([[0.0, 0.0], [2.0, 0.0], [0.0, 2.0], [2.0, 2.0]])
 | |
| 
 | |
|         hull = qhull.HalfspaceIntersection(halfspaces, feasible_point)
 | |
| 
 | |
|         assert_allclose(hull.intersections, points)
 | |
| 
 | |
|     def test_self_dual_polytope_intersection(self):
 | |
|         fname = os.path.join(os.path.dirname(__file__), 'data',
 | |
|                              'selfdual-4d-polytope.txt')
 | |
|         ineqs = np.genfromtxt(fname)
 | |
|         halfspaces = -np.hstack((ineqs[:, 1:], ineqs[:, :1]))
 | |
| 
 | |
|         feas_point = np.array([0., 0., 0., 0.])
 | |
|         hs = qhull.HalfspaceIntersection(halfspaces, feas_point)
 | |
| 
 | |
|         assert_equal(hs.intersections.shape, (24, 4))
 | |
| 
 | |
|         assert_almost_equal(hs.dual_volume, 32.0)
 | |
|         assert_equal(len(hs.dual_facets), 24)
 | |
|         for facet in hs.dual_facets:
 | |
|             assert_equal(len(facet), 6)
 | |
| 
 | |
|         dists = halfspaces[:, -1] + halfspaces[:, :-1].dot(feas_point)
 | |
|         self.assert_unordered_allclose((halfspaces[:, :-1].T/dists).T, hs.dual_points)
 | |
| 
 | |
|         points = itertools.permutations([0., 0., 0.5, -0.5])
 | |
|         for point in points:
 | |
|             assert_equal(np.sum((hs.intersections == point).all(axis=1)), 1)
 | |
| 
 | |
|     def test_wrong_feasible_point(self):
 | |
|         halfspaces = np.array([[-1.0, 0.0, 0.0],
 | |
|                                [0.0, -1.0, 0.0],
 | |
|                                [1.0, 0.0, -1.0],
 | |
|                                [0.0, 1.0, -1.0]])
 | |
|         feasible_point = np.array([0.5, 0.5, 0.5])
 | |
|         #Feasible point is (ndim,) instead of (ndim-1,)
 | |
|         assert_raises(ValueError,
 | |
|                       qhull.HalfspaceIntersection, halfspaces, feasible_point)
 | |
|         feasible_point = np.array([[0.5], [0.5]])
 | |
|         #Feasible point is (ndim-1, 1) instead of (ndim-1,)
 | |
|         assert_raises(ValueError,
 | |
|                       qhull.HalfspaceIntersection, halfspaces, feasible_point)
 | |
|         feasible_point = np.array([[0.5, 0.5]])
 | |
|         #Feasible point is (1, ndim-1) instead of (ndim-1,)
 | |
|         assert_raises(ValueError,
 | |
|                       qhull.HalfspaceIntersection, halfspaces, feasible_point)
 | |
| 
 | |
|         feasible_point = np.array([-0.5, -0.5])
 | |
|         #Feasible point is outside feasible region
 | |
|         assert_raises(qhull.QhullError,
 | |
|                       qhull.HalfspaceIntersection, halfspaces, feasible_point)
 | |
| 
 | |
|     def test_incremental(self):
 | |
|         #Cube
 | |
|         halfspaces = np.array([[0., 0., -1., -0.5],
 | |
|                                [0., -1., 0., -0.5],
 | |
|                                [-1., 0., 0., -0.5],
 | |
|                                [1., 0., 0., -0.5],
 | |
|                                [0., 1., 0., -0.5],
 | |
|                                [0., 0., 1., -0.5]])
 | |
|         #Cut each summit
 | |
|         extra_normals = np.array([[1., 1., 1.],
 | |
|                                   [1., 1., -1.],
 | |
|                                   [1., -1., 1.],
 | |
|                                   [1, -1., -1.]])
 | |
|         offsets = np.array([[-1.]]*8)
 | |
|         extra_halfspaces = np.hstack((np.vstack((extra_normals, -extra_normals)),
 | |
|                                       offsets))
 | |
| 
 | |
|         feas_point = np.array([0., 0., 0.])
 | |
| 
 | |
|         inc_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True)
 | |
| 
 | |
|         inc_res_hs = qhull.HalfspaceIntersection(halfspaces, feas_point,
 | |
|                                                  incremental=True)
 | |
| 
 | |
|         for i, ehs in enumerate(extra_halfspaces):
 | |
|             inc_hs.add_halfspaces(ehs[np.newaxis, :])
 | |
| 
 | |
|             inc_res_hs.add_halfspaces(ehs[np.newaxis, :], restart=True)
 | |
| 
 | |
|             total = np.vstack((halfspaces, extra_halfspaces[:i+1, :]))
 | |
| 
 | |
|             hs = qhull.HalfspaceIntersection(total, feas_point)
 | |
| 
 | |
|             assert_allclose(inc_hs.halfspaces, inc_res_hs.halfspaces)
 | |
|             assert_allclose(inc_hs.halfspaces, hs.halfspaces)
 | |
| 
 | |
|             #Direct computation and restart should have points in same order
 | |
|             assert_allclose(hs.intersections, inc_res_hs.intersections)
 | |
|             #Incremental will have points in different order than direct computation
 | |
|             self.assert_unordered_allclose(inc_hs.intersections, hs.intersections)
 | |
| 
 | |
|         inc_hs.close()
 | |
| 
 | |
|     def test_cube(self):
 | |
|         # Halfspaces of the cube:
 | |
|         halfspaces = np.array([[-1., 0., 0., 0.],  # x >= 0
 | |
|                                [1., 0., 0., -1.],  # x <= 1
 | |
|                                [0., -1., 0., 0.],  # y >= 0
 | |
|                                [0., 1., 0., -1.],  # y <= 1
 | |
|                                [0., 0., -1., 0.],  # z >= 0
 | |
|                                [0., 0., 1., -1.]])  # z <= 1
 | |
|         point = np.array([0.5, 0.5, 0.5])
 | |
| 
 | |
|         hs = qhull.HalfspaceIntersection(halfspaces, point)
 | |
| 
 | |
|         # qhalf H0.5,0.5,0.5 o < input.txt
 | |
|         qhalf_points = np.array([
 | |
|             [-2, 0, 0],
 | |
|             [2, 0, 0],
 | |
|             [0, -2, 0],
 | |
|             [0, 2, 0],
 | |
|             [0, 0, -2],
 | |
|             [0, 0, 2]])
 | |
|         qhalf_facets = [
 | |
|             [2, 4, 0],
 | |
|             [4, 2, 1],
 | |
|             [5, 2, 0],
 | |
|             [2, 5, 1],
 | |
|             [3, 4, 1],
 | |
|             [4, 3, 0],
 | |
|             [5, 3, 1],
 | |
|             [3, 5, 0]]
 | |
| 
 | |
|         assert len(qhalf_facets) == len(hs.dual_facets)
 | |
|         for a, b in zip(qhalf_facets, hs.dual_facets):
 | |
|             assert set(a) == set(b)  # facet orientation can differ
 | |
| 
 | |
|         assert_allclose(hs.dual_points, qhalf_points)
 | |
| 
 | |
|     @pytest.mark.parametrize("k", range(1,4))
 | |
|     def test_halfspace_batch(self, k):
 | |
|         # Test that we can add halfspaces a few at a time
 | |
|         big_square = np.array([[ 1.,  0., -2.],
 | |
|                                [-1.,  0., -2.],
 | |
|                                [ 0.,  1., -2.],
 | |
|                                [ 0., -1., -2.]])
 | |
| 
 | |
|         small_square = np.array([[ 1.,  0., -1.],
 | |
|                                  [-1.,  0., -1.],
 | |
|                                  [ 0.,  1., -1.],
 | |
|                                  [ 0., -1., -1.]])
 | |
| 
 | |
|         hs = qhull.HalfspaceIntersection(big_square,
 | |
|                                          np.array([0.3141, 0.2718]),
 | |
|                                          incremental=True)
 | |
| 
 | |
|         hs.add_halfspaces(small_square[0:k,:])
 | |
|         hs.add_halfspaces(small_square[k:4,:])
 | |
|         hs.close()
 | |
| 
 | |
|         # Check the intersections are correct (they are the corners of the small square)
 | |
|         expected_intersections = np.array([[1., 1.],
 | |
|                                            [1., -1.],
 | |
|                                            [-1., 1.],
 | |
|                                            [-1., -1.]])
 | |
|         actual_intersections = hs.intersections
 | |
|         # They may be in any order, so just check that under some permutation 
 | |
|         # expected=actual.
 | |
| 
 | |
|         ind1 = np.lexsort((actual_intersections[:, 1], actual_intersections[:, 0]))
 | |
|         ind2 = np.lexsort((expected_intersections[:, 1], expected_intersections[:, 0]))
 | |
|         assert_allclose(actual_intersections[ind1], expected_intersections[ind2])
 | |
| 
 | |
| 
 | |
|     @pytest.mark.parametrize("halfspaces", [
 | |
|     (np.array([-0.70613882, -0.45589431, 0.04178256])),
 | |
|     (np.array([[-0.70613882, -0.45589431,  0.04178256],
 | |
|                [0.70807342, -0.45464871, -0.45969769],
 | |
|                [0.,  0.76515026, -0.35614825]])),
 | |
|     ])
 | |
|     def test_gh_19865(self, halfspaces):
 | |
|         # starting off with a feasible interior point and
 | |
|         # adding halfspaces for which it is no longer feasible
 | |
|         # should result in an error rather than a problematic
 | |
|         # intersection polytope
 | |
|         initial_square =  np.array(
 | |
|                     [[1, 0, -1], [0, 1, -1], [-1, 0, -1], [0, -1, -1]]
 | |
|                 )
 | |
|         incremental_intersector = qhull.HalfspaceIntersection(initial_square,
 | |
|                                                               np.zeros(2),
 | |
|                                                               incremental=True)
 | |
|         with pytest.raises(qhull.QhullError, match="feasible.*-0.706.*"):
 | |
|             incremental_intersector.add_halfspaces(halfspaces)
 | |
| 
 | |
| 
 | |
|     def test_gh_19865_3d(self):
 | |
|         # 3d case where closed half space is enforced for
 | |
|         # feasibility
 | |
|         halfspaces = np.array([[1, 1, 1, -1], # doesn't exclude origin
 | |
|                                [-1, -1, -1, -1], # doesn't exclude origin
 | |
|                                [1, 0, 0, 0]]) # the origin is on the line
 | |
|         initial_cube = np.array([[1, 0, 0, -1],
 | |
|                                  [-1, 0, 0, -1],
 | |
|                                  [0, 1, 0, -1],
 | |
|                                  [0, -1, 0, -1],
 | |
|                                  [0, 0, 1, -1],
 | |
|                                  [0, 0, -1, -1]])
 | |
|         incremental_intersector = qhull.HalfspaceIntersection(initial_cube,
 | |
|                                                               np.zeros(3),
 | |
|                                                               incremental=True)
 | |
|         with pytest.raises(qhull.QhullError, match="feasible.*[1 0 0 0]"):
 | |
|             incremental_intersector.add_halfspaces(halfspaces)
 | |
| 
 | |
| 
 | |
|     def test_2d_add_halfspace_input(self):
 | |
|         # incrementally added halfspaces should respect the 2D
 | |
|         # array shape requirement
 | |
|         initial_square =  np.array(
 | |
|                     [[1, 0, -1], [0, 1, -1], [-1, 0, -1], [0, -1, -1]]
 | |
|                 )
 | |
|         incremental_intersector = qhull.HalfspaceIntersection(initial_square,
 | |
|                                                               np.zeros(2),
 | |
|                                                               incremental=True)
 | |
|         with pytest.raises(ValueError, match="2D array"):
 | |
|             incremental_intersector.add_halfspaces(np.ones((4, 4, 4)))
 | |
| 
 | |
|     def test_1d_add_halfspace_input(self):
 | |
|         # we do allow 1D `halfspaces` input to add_halfspaces()
 | |
|         initial_square =  np.array(
 | |
|                     [[1, 0, -1], [0, 1, -1], [-1, 0, -1], [0, -1, -1]]
 | |
|                 )
 | |
|         incremental_intersector = qhull.HalfspaceIntersection(initial_square,
 | |
|                                                               np.zeros(2),
 | |
|                                                               incremental=True)
 | |
|         assert_allclose(incremental_intersector.dual_vertices, np.arange(4))
 | |
|         incremental_intersector.add_halfspaces(np.array([2, 2, -1]))
 | |
|         assert_allclose(incremental_intersector.dual_vertices, np.arange(5))
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("diagram_type", [Voronoi, qhull.Delaunay])
 | |
| def test_gh_20623(diagram_type):
 | |
|     rng = np.random.default_rng(123)
 | |
|     invalid_data = rng.random((4, 10, 3))
 | |
|     with pytest.raises(ValueError, match="dimensions"):
 | |
|         diagram_type(invalid_data)
 | |
| 
 | |
| 
 | |
| def test_gh_21286():
 | |
|     generators = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
 | |
|     tri = qhull.Delaunay(generators)
 | |
|     # verify absence of segfault reported in ticket:
 | |
|     with pytest.raises(IndexError):
 | |
|         tri.find_simplex(1)
 | |
|     with pytest.raises(IndexError):
 | |
|         # strikingly, Delaunay object has shape
 | |
|         # () just like np.asanyarray(1) above
 | |
|         tri.find_simplex(tri)
 | |
| 
 | |
| 
 | |
| def test_find_simplex_ndim_err():
 | |
|     generators = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
 | |
|     tri = qhull.Delaunay(generators)
 | |
|     with pytest.raises(ValueError):
 | |
|         tri.find_simplex([2, 2, 2])
 |