2294 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			2294 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| Test SciPy functions versus mpmath, if available.
 | |
| 
 | |
| """
 | |
| import numpy as np
 | |
| from numpy.testing import assert_, assert_allclose, suppress_warnings
 | |
| from numpy import pi
 | |
| import pytest
 | |
| import itertools
 | |
| 
 | |
| from scipy._lib import _pep440
 | |
| 
 | |
| import scipy.special as sc
 | |
| from scipy.special._testutils import (
 | |
|     MissingModule, check_version, FuncData,
 | |
|     assert_func_equal)
 | |
| from scipy.special._mptestutils import (
 | |
|     Arg, FixedArg, ComplexArg, IntArg, assert_mpmath_equal,
 | |
|     nonfunctional_tooslow, trace_args, time_limited, exception_to_nan,
 | |
|     inf_to_nan)
 | |
| from scipy.special._ufuncs import (
 | |
|     _sinpi, _cospi, _lgam1p, _lanczos_sum_expg_scaled, _log1pmx,
 | |
|     _igam_fac)
 | |
| 
 | |
| try:
 | |
|     import mpmath
 | |
| except ImportError:
 | |
|     mpmath = MissingModule('mpmath')
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # expi
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.10')
 | |
| def test_expi_complex():
 | |
|     dataset = []
 | |
|     for r in np.logspace(-99, 2, 10):
 | |
|         for p in np.linspace(0, 2*np.pi, 30):
 | |
|             z = r*np.exp(1j*p)
 | |
|             dataset.append((z, complex(mpmath.ei(z))))
 | |
|     dataset = np.array(dataset, dtype=np.cdouble)
 | |
| 
 | |
|     FuncData(sc.expi, dataset, 0, 1).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # expn
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_expn_large_n():
 | |
|     # Test the transition to the asymptotic regime of n.
 | |
|     dataset = []
 | |
|     for n in [50, 51]:
 | |
|         for x in np.logspace(0, 4, 200):
 | |
|             with mpmath.workdps(100):
 | |
|                 dataset.append((n, x, float(mpmath.expint(n, x))))
 | |
|     dataset = np.asarray(dataset)
 | |
| 
 | |
|     FuncData(sc.expn, dataset, (0, 1), 2, rtol=1e-13).check()
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # hyp0f1
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_hyp0f1_gh5764():
 | |
|     # Do a small and somewhat systematic test that runs quickly
 | |
|     dataset = []
 | |
|     axis = [-99.5, -9.5, -0.5, 0.5, 9.5, 99.5]
 | |
|     for v in axis:
 | |
|         for x in axis:
 | |
|             for y in axis:
 | |
|                 z = x + 1j*y
 | |
|                 # mpmath computes the answer correctly at dps ~ 17 but
 | |
|                 # fails for 20 < dps < 120 (uses a different method);
 | |
|                 # set the dps high enough that this isn't an issue
 | |
|                 with mpmath.workdps(120):
 | |
|                     res = complex(mpmath.hyp0f1(v, z))
 | |
|                 dataset.append((v, z, res))
 | |
|     dataset = np.array(dataset)
 | |
| 
 | |
|     FuncData(lambda v, z: sc.hyp0f1(v.real, z), dataset, (0, 1), 2,
 | |
|              rtol=1e-13).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_hyp0f1_gh_1609():
 | |
|     # this is a regression test for gh-1609
 | |
|     vv = np.linspace(150, 180, 21)
 | |
|     af = sc.hyp0f1(vv, 0.5)
 | |
|     mf = np.array([mpmath.hyp0f1(v, 0.5) for v in vv])
 | |
|     assert_allclose(af, mf.astype(float), rtol=1e-12)
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # hyperu
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '1.1.0')
 | |
| def test_hyperu_around_0():
 | |
|     dataset = []
 | |
|     # DLMF 13.2.14-15 test points.
 | |
|     for n in np.arange(-5, 5):
 | |
|         for b in np.linspace(-5, 5, 20):
 | |
|             a = -n
 | |
|             dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
 | |
|             a = -n + b - 1
 | |
|             dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
 | |
|     # DLMF 13.2.16-22 test points.
 | |
|     for a in [-10.5, -1.5, -0.5, 0, 0.5, 1, 10]:
 | |
|         for b in [-1.0, -0.5, 0, 0.5, 1, 1.5, 2, 2.5]:
 | |
|             dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
 | |
|     dataset = np.array(dataset)
 | |
| 
 | |
|     FuncData(sc.hyperu, dataset, (0, 1, 2), 3, rtol=1e-15, atol=5e-13).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # hyp2f1
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '1.0.0')
 | |
| def test_hyp2f1_strange_points():
 | |
|     pts = [
 | |
|         (2, -1, -1, 0.7),  # expected: 2.4
 | |
|         (2, -2, -2, 0.7),  # expected: 3.87
 | |
|     ]
 | |
|     pts += list(itertools.product([2, 1, -0.7, -1000], repeat=4))
 | |
|     pts = [
 | |
|         (a, b, c, x) for a, b, c, x in pts
 | |
|         if b == c and round(b) == b and b < 0 and b != -1000
 | |
|     ]
 | |
|     kw = dict(eliminate=True)
 | |
|     dataset = [p + (float(mpmath.hyp2f1(*p, **kw)),) for p in pts]
 | |
|     dataset = np.array(dataset, dtype=np.float64)
 | |
| 
 | |
|     FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.13')
 | |
| def test_hyp2f1_real_some_points():
 | |
|     pts = [
 | |
|         (1, 2, 3, 0),
 | |
|         (1./3, 2./3, 5./6, 27./32),
 | |
|         (1./4, 1./2, 3./4, 80./81),
 | |
|         (2,-2, -3, 3),
 | |
|         (2, -3, -2, 3),
 | |
|         (2, -1.5, -1.5, 3),
 | |
|         (1, 2, 3, 0),
 | |
|         (0.7235, -1, -5, 0.3),
 | |
|         (0.25, 1./3, 2, 0.999),
 | |
|         (0.25, 1./3, 2, -1),
 | |
|         (2, 3, 5, 0.99),
 | |
|         (3./2, -0.5, 3, 0.99),
 | |
|         (2, 2.5, -3.25, 0.999),
 | |
|         (-8, 18.016500331508873, 10.805295997850628, 0.90875647507000001),
 | |
|         (-10, 900, -10.5, 0.99),
 | |
|         (-10, 900, 10.5, 0.99),
 | |
|         (-1, 2, 1, 1.0),
 | |
|         (-1, 2, 1, -1.0),
 | |
|         (-3, 13, 5, 1.0),
 | |
|         (-3, 13, 5, -1.0),
 | |
|         (0.5, 1 - 270.5, 1.5, 0.999**2),  # from issue 1561
 | |
|     ]
 | |
|     dataset = [p + (float(mpmath.hyp2f1(*p)),) for p in pts]
 | |
|     dataset = np.array(dataset, dtype=np.float64)
 | |
| 
 | |
|     with np.errstate(invalid='ignore'):
 | |
|         FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.14')
 | |
| def test_hyp2f1_some_points_2():
 | |
|     # Taken from mpmath unit tests -- this point failed for mpmath 0.13 but
 | |
|     # was fixed in their SVN since then
 | |
|     pts = [
 | |
|         (112, (51,10), (-9,10), -0.99999),
 | |
|         (10,-900,10.5,0.99),
 | |
|         (10,-900,-10.5,0.99),
 | |
|     ]
 | |
| 
 | |
|     def fev(x):
 | |
|         if isinstance(x, tuple):
 | |
|             return float(x[0]) / x[1]
 | |
|         else:
 | |
|             return x
 | |
| 
 | |
|     dataset = [tuple(map(fev, p)) + (float(mpmath.hyp2f1(*p)),) for p in pts]
 | |
|     dataset = np.array(dataset, dtype=np.float64)
 | |
| 
 | |
|     FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.13')
 | |
| def test_hyp2f1_real_some():
 | |
|     dataset = []
 | |
|     for a in [-10, -5, -1.8, 1.8, 5, 10]:
 | |
|         for b in [-2.5, -1, 1, 7.4]:
 | |
|             for c in [-9, -1.8, 5, 20.4]:
 | |
|                 for z in [-10, -1.01, -0.99, 0, 0.6, 0.95, 1.5, 10]:
 | |
|                     try:
 | |
|                         v = float(mpmath.hyp2f1(a, b, c, z))
 | |
|                     except Exception:
 | |
|                         continue
 | |
|                     dataset.append((a, b, c, z, v))
 | |
|     dataset = np.array(dataset, dtype=np.float64)
 | |
| 
 | |
|     with np.errstate(invalid='ignore'):
 | |
|         FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-9,
 | |
|                  ignore_inf_sign=True).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.12')
 | |
| @pytest.mark.slow
 | |
| def test_hyp2f1_real_random():
 | |
|     npoints = 500
 | |
|     dataset = np.zeros((npoints, 5), np.float64)
 | |
| 
 | |
|     np.random.seed(1234)
 | |
|     dataset[:, 0] = np.random.pareto(1.5, npoints)
 | |
|     dataset[:, 1] = np.random.pareto(1.5, npoints)
 | |
|     dataset[:, 2] = np.random.pareto(1.5, npoints)
 | |
|     dataset[:, 3] = 2*np.random.rand(npoints) - 1
 | |
| 
 | |
|     dataset[:, 0] *= (-1)**np.random.randint(2, npoints)
 | |
|     dataset[:, 1] *= (-1)**np.random.randint(2, npoints)
 | |
|     dataset[:, 2] *= (-1)**np.random.randint(2, npoints)
 | |
| 
 | |
|     for ds in dataset:
 | |
|         if mpmath.__version__ < '0.14':
 | |
|             # mpmath < 0.14 fails for c too much smaller than a, b
 | |
|             if abs(ds[:2]).max() > abs(ds[2]):
 | |
|                 ds[2] = abs(ds[:2]).max()
 | |
|         ds[4] = float(mpmath.hyp2f1(*tuple(ds[:4])))
 | |
| 
 | |
|     FuncData(sc.hyp2f1, dataset, (0, 1, 2, 3), 4, rtol=1e-9).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # erf (complex)
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.14')
 | |
| def test_erf_complex():
 | |
|     # need to increase mpmath precision for this test
 | |
|     old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
 | |
|     try:
 | |
|         mpmath.mp.dps = 70
 | |
|         x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
 | |
|         x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
 | |
|         points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()]
 | |
| 
 | |
|         assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
 | |
|                           vectorized=False, rtol=1e-13)
 | |
|         assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
 | |
|                           vectorized=False, rtol=1e-13)
 | |
|     finally:
 | |
|         mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # lpmv
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.15')
 | |
| def test_lpmv():
 | |
|     pts = []
 | |
|     for x in [-0.99, -0.557, 1e-6, 0.132, 1]:
 | |
|         pts.extend([
 | |
|             (1, 1, x),
 | |
|             (1, -1, x),
 | |
|             (-1, 1, x),
 | |
|             (-1, -2, x),
 | |
|             (1, 1.7, x),
 | |
|             (1, -1.7, x),
 | |
|             (-1, 1.7, x),
 | |
|             (-1, -2.7, x),
 | |
|             (1, 10, x),
 | |
|             (1, 11, x),
 | |
|             (3, 8, x),
 | |
|             (5, 11, x),
 | |
|             (-3, 8, x),
 | |
|             (-5, 11, x),
 | |
|             (3, -8, x),
 | |
|             (5, -11, x),
 | |
|             (-3, -8, x),
 | |
|             (-5, -11, x),
 | |
|             (3, 8.3, x),
 | |
|             (5, 11.3, x),
 | |
|             (-3, 8.3, x),
 | |
|             (-5, 11.3, x),
 | |
|             (3, -8.3, x),
 | |
|             (5, -11.3, x),
 | |
|             (-3, -8.3, x),
 | |
|             (-5, -11.3, x),
 | |
|         ])
 | |
| 
 | |
|     def mplegenp(nu, mu, x):
 | |
|         if mu == int(mu) and x == 1:
 | |
|             # mpmath 0.17 gets this wrong
 | |
|             if mu == 0:
 | |
|                 return 1
 | |
|             else:
 | |
|                 return 0
 | |
|         return mpmath.legenp(nu, mu, x)
 | |
| 
 | |
|     dataset = [p + (mplegenp(p[1], p[0], p[2]),) for p in pts]
 | |
|     dataset = np.array(dataset, dtype=np.float64)
 | |
| 
 | |
|     def evf(mu, nu, x):
 | |
|         return sc.lpmv(mu.astype(int), nu, x)
 | |
| 
 | |
|     with np.errstate(invalid='ignore'):
 | |
|         FuncData(evf, dataset, (0,1,2), 3, rtol=1e-10, atol=1e-14).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # beta
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @pytest.mark.slow
 | |
| @check_version(mpmath, '0.15')
 | |
| def test_beta():
 | |
|     np.random.seed(1234)
 | |
| 
 | |
|     b = np.r_[np.logspace(-200, 200, 4),
 | |
|               np.logspace(-10, 10, 4),
 | |
|               np.logspace(-1, 1, 4),
 | |
|               np.arange(-10, 11, 1),
 | |
|               np.arange(-10, 11, 1) + 0.5,
 | |
|               -1, -2.3, -3, -100.3, -10003.4]
 | |
|     a = b
 | |
| 
 | |
|     ab = np.array(np.broadcast_arrays(a[:,None], b[None,:])).reshape(2, -1).T
 | |
| 
 | |
|     old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
 | |
|     try:
 | |
|         mpmath.mp.dps = 400
 | |
| 
 | |
|         assert_func_equal(sc.beta,
 | |
|                           lambda a, b: float(mpmath.beta(a, b)),
 | |
|                           ab,
 | |
|                           vectorized=False,
 | |
|                           rtol=1e-10,
 | |
|                           ignore_inf_sign=True)
 | |
| 
 | |
|         assert_func_equal(
 | |
|             sc.betaln,
 | |
|             lambda a, b: float(mpmath.log(abs(mpmath.beta(a, b)))),
 | |
|             ab,
 | |
|             vectorized=False,
 | |
|             rtol=1e-10)
 | |
|     finally:
 | |
|         mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # loggamma
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| LOGGAMMA_TAYLOR_RADIUS = 0.2
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_loggamma_taylor_transition():
 | |
|     # Make sure there isn't a big jump in accuracy when we move from
 | |
|     # using the Taylor series to using the recurrence relation.
 | |
| 
 | |
|     r = LOGGAMMA_TAYLOR_RADIUS + np.array([-0.1, -0.01, 0, 0.01, 0.1])
 | |
|     theta = np.linspace(0, 2*np.pi, 20)
 | |
|     r, theta = np.meshgrid(r, theta)
 | |
|     dz = r*np.exp(1j*theta)
 | |
|     z = np.r_[1 + dz, 2 + dz].flatten()
 | |
| 
 | |
|     dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z]
 | |
|     dataset = np.array(dataset)
 | |
| 
 | |
|     FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_loggamma_taylor():
 | |
|     # Test around the zeros at z = 1, 2.
 | |
| 
 | |
|     r = np.logspace(-16, np.log10(LOGGAMMA_TAYLOR_RADIUS), 10)
 | |
|     theta = np.linspace(0, 2*np.pi, 20)
 | |
|     r, theta = np.meshgrid(r, theta)
 | |
|     dz = r*np.exp(1j*theta)
 | |
|     z = np.r_[1 + dz, 2 + dz].flatten()
 | |
| 
 | |
|     dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z]
 | |
|     dataset = np.array(dataset)
 | |
| 
 | |
|     FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # rgamma
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| @pytest.mark.slow
 | |
| def test_rgamma_zeros():
 | |
|     # Test around the zeros at z = 0, -1, -2, ...,  -169. (After -169 we
 | |
|     # get values that are out of floating point range even when we're
 | |
|     # within 0.1 of the zero.)
 | |
| 
 | |
|     # Can't use too many points here or the test takes forever.
 | |
|     dx = np.r_[-np.logspace(-1, -13, 3), 0, np.logspace(-13, -1, 3)]
 | |
|     dy = dx.copy()
 | |
|     dx, dy = np.meshgrid(dx, dy)
 | |
|     dz = dx + 1j*dy
 | |
|     zeros = np.arange(0, -170, -1).reshape(1, 1, -1)
 | |
|     z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
 | |
|     with mpmath.workdps(100):
 | |
|         dataset = [(z0, complex(mpmath.rgamma(z0))) for z0 in z]
 | |
| 
 | |
|     dataset = np.array(dataset)
 | |
|     FuncData(sc.rgamma, dataset, 0, 1, rtol=1e-12).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # digamma
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| @pytest.mark.slow
 | |
| def test_digamma_roots():
 | |
|     # Test the special-cased roots for digamma.
 | |
|     root = mpmath.findroot(mpmath.digamma, 1.5)
 | |
|     roots = [float(root)]
 | |
|     root = mpmath.findroot(mpmath.digamma, -0.5)
 | |
|     roots.append(float(root))
 | |
|     roots = np.array(roots)
 | |
| 
 | |
|     # If we test beyond a radius of 0.24 mpmath will take forever.
 | |
|     dx = np.r_[-0.24, -np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10), 0.24]
 | |
|     dy = dx.copy()
 | |
|     dx, dy = np.meshgrid(dx, dy)
 | |
|     dz = dx + 1j*dy
 | |
|     z = (roots + np.dstack((dz,)*roots.size)).flatten()
 | |
|     with mpmath.workdps(30):
 | |
|         dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z]
 | |
| 
 | |
|     dataset = np.array(dataset)
 | |
|     FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_digamma_negreal():
 | |
|     # Test digamma around the negative real axis. Don't do this in
 | |
|     # TestSystematic because the points need some jiggering so that
 | |
|     # mpmath doesn't take forever.
 | |
| 
 | |
|     digamma = exception_to_nan(mpmath.digamma)
 | |
| 
 | |
|     x = -np.logspace(300, -30, 100)
 | |
|     y = np.r_[-np.logspace(0, -3, 5), 0, np.logspace(-3, 0, 5)]
 | |
|     x, y = np.meshgrid(x, y)
 | |
|     z = (x + 1j*y).flatten()
 | |
| 
 | |
|     with mpmath.workdps(40):
 | |
|         dataset = [(z0, complex(digamma(z0))) for z0 in z]
 | |
|     dataset = np.asarray(dataset)
 | |
| 
 | |
|     FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_digamma_boundary():
 | |
|     # Check that there isn't a jump in accuracy when we switch from
 | |
|     # using the asymptotic series to the reflection formula.
 | |
| 
 | |
|     x = -np.logspace(300, -30, 100)
 | |
|     y = np.array([-6.1, -5.9, 5.9, 6.1])
 | |
|     x, y = np.meshgrid(x, y)
 | |
|     z = (x + 1j*y).flatten()
 | |
| 
 | |
|     with mpmath.workdps(30):
 | |
|         dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z]
 | |
|     dataset = np.asarray(dataset)
 | |
| 
 | |
|     FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # gammainc
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| @pytest.mark.slow
 | |
| def test_gammainc_boundary():
 | |
|     # Test the transition to the asymptotic series.
 | |
|     small = 20
 | |
|     a = np.linspace(0.5*small, 2*small, 50)
 | |
|     x = a.copy()
 | |
|     a, x = np.meshgrid(a, x)
 | |
|     a, x = a.flatten(), x.flatten()
 | |
|     with mpmath.workdps(100):
 | |
|         dataset = [(a0, x0, float(mpmath.gammainc(a0, b=x0, regularized=True)))
 | |
|                    for a0, x0 in zip(a, x)]
 | |
|     dataset = np.array(dataset)
 | |
| 
 | |
|     FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-12).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # spence
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| @pytest.mark.slow
 | |
| def test_spence_circle():
 | |
|     # The trickiest region for spence is around the circle |z - 1| = 1,
 | |
|     # so test that region carefully.
 | |
| 
 | |
|     def spence(z):
 | |
|         return complex(mpmath.polylog(2, 1 - z))
 | |
| 
 | |
|     r = np.linspace(0.5, 1.5)
 | |
|     theta = np.linspace(0, 2*pi)
 | |
|     z = (1 + np.outer(r, np.exp(1j*theta))).flatten()
 | |
|     dataset = np.asarray([(z0, spence(z0)) for z0 in z])
 | |
| 
 | |
|     FuncData(sc.spence, dataset, 0, 1, rtol=1e-14).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # sinpi and cospi
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_sinpi_zeros():
 | |
|     eps = np.finfo(float).eps
 | |
|     dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)]
 | |
|     dy = dx.copy()
 | |
|     dx, dy = np.meshgrid(dx, dy)
 | |
|     dz = dx + 1j*dy
 | |
|     zeros = np.arange(-100, 100, 1).reshape(1, 1, -1)
 | |
|     z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
 | |
|     dataset = np.asarray([(z0, complex(mpmath.sinpi(z0)))
 | |
|                           for z0 in z])
 | |
|     FuncData(_sinpi, dataset, 0, 1, rtol=2*eps).check()
 | |
| 
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_cospi_zeros():
 | |
|     eps = np.finfo(float).eps
 | |
|     dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)]
 | |
|     dy = dx.copy()
 | |
|     dx, dy = np.meshgrid(dx, dy)
 | |
|     dz = dx + 1j*dy
 | |
|     zeros = (np.arange(-100, 100, 1) + 0.5).reshape(1, 1, -1)
 | |
|     z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
 | |
|     dataset = np.asarray([(z0, complex(mpmath.cospi(z0)))
 | |
|                           for z0 in z])
 | |
| 
 | |
|     FuncData(_cospi, dataset, 0, 1, rtol=2*eps).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # ellipj
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_dn_quarter_period():
 | |
|     def dn(u, m):
 | |
|         return sc.ellipj(u, m)[2]
 | |
| 
 | |
|     def mpmath_dn(u, m):
 | |
|         return float(mpmath.ellipfun("dn", u=u, m=m))
 | |
| 
 | |
|     m = np.linspace(0, 1, 20)
 | |
|     du = np.r_[-np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10)]
 | |
|     dataset = []
 | |
|     for m0 in m:
 | |
|         u0 = float(mpmath.ellipk(m0))
 | |
|         for du0 in du:
 | |
|             p = u0 + du0
 | |
|             dataset.append((p, m0, mpmath_dn(p, m0)))
 | |
|     dataset = np.asarray(dataset)
 | |
| 
 | |
|     FuncData(dn, dataset, (0, 1), 2, rtol=1e-10).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # Wright Omega
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| def _mpmath_wrightomega(z, dps):
 | |
|     with mpmath.workdps(dps):
 | |
|         z = mpmath.mpc(z)
 | |
|         unwind = mpmath.ceil((z.imag - mpmath.pi)/(2*mpmath.pi))
 | |
|         res = mpmath.lambertw(mpmath.exp(z), unwind)
 | |
|     return res
 | |
| 
 | |
| 
 | |
| @pytest.mark.slow
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_wrightomega_branch():
 | |
|     x = -np.logspace(10, 0, 25)
 | |
|     picut_above = [np.nextafter(np.pi, np.inf)]
 | |
|     picut_below = [np.nextafter(np.pi, -np.inf)]
 | |
|     npicut_above = [np.nextafter(-np.pi, np.inf)]
 | |
|     npicut_below = [np.nextafter(-np.pi, -np.inf)]
 | |
|     for i in range(50):
 | |
|         picut_above.append(np.nextafter(picut_above[-1], np.inf))
 | |
|         picut_below.append(np.nextafter(picut_below[-1], -np.inf))
 | |
|         npicut_above.append(np.nextafter(npicut_above[-1], np.inf))
 | |
|         npicut_below.append(np.nextafter(npicut_below[-1], -np.inf))
 | |
|     y = np.hstack((picut_above, picut_below, npicut_above, npicut_below))
 | |
|     x, y = np.meshgrid(x, y)
 | |
|     z = (x + 1j*y).flatten()
 | |
| 
 | |
|     dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
 | |
|                           for z0 in z])
 | |
| 
 | |
|     FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check()
 | |
| 
 | |
| 
 | |
| @pytest.mark.slow
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_wrightomega_region1():
 | |
|     # This region gets less coverage in the TestSystematic test
 | |
|     x = np.linspace(-2, 1)
 | |
|     y = np.linspace(1, 2*np.pi)
 | |
|     x, y = np.meshgrid(x, y)
 | |
|     z = (x + 1j*y).flatten()
 | |
| 
 | |
|     dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
 | |
|                           for z0 in z])
 | |
| 
 | |
|     FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check()
 | |
| 
 | |
| 
 | |
| @pytest.mark.slow
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_wrightomega_region2():
 | |
|     # This region gets less coverage in the TestSystematic test
 | |
|     x = np.linspace(-2, 1)
 | |
|     y = np.linspace(-2*np.pi, -1)
 | |
|     x, y = np.meshgrid(x, y)
 | |
|     z = (x + 1j*y).flatten()
 | |
| 
 | |
|     dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
 | |
|                           for z0 in z])
 | |
| 
 | |
|     FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # lambertw
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| @pytest.mark.slow
 | |
| @check_version(mpmath, '0.19')
 | |
| def test_lambertw_smallz():
 | |
|     x, y = np.linspace(-1, 1, 25), np.linspace(-1, 1, 25)
 | |
|     x, y = np.meshgrid(x, y)
 | |
|     z = (x + 1j*y).flatten()
 | |
| 
 | |
|     dataset = np.asarray([(z0, complex(mpmath.lambertw(z0)))
 | |
|                           for z0 in z])
 | |
| 
 | |
|     FuncData(sc.lambertw, dataset, 0, 1, rtol=1e-13).check()
 | |
| 
 | |
| 
 | |
| # ------------------------------------------------------------------------------
 | |
| # Systematic tests
 | |
| # ------------------------------------------------------------------------------
 | |
| 
 | |
| # The functions lpn, lpmn, clpmn, and sph_harm appearing below are
 | |
| # deprecated in favor of legendre_p_all, assoc_legendre_p_all,
 | |
| # assoc_legendre_p_all (assoc_legendre_p_all covers lpmn and clpmn),
 | |
| # and sph_harm_y respectively. The deprecated functions listed above are
 | |
| # implemented as shims around their respective replacements. The replacements
 | |
| # are tested separately, but tests for the deprecated functions remain to
 | |
| # verify the correctness of the shims.
 | |
| 
 | |
| HYPERKW = dict(maxprec=200, maxterms=200)
 | |
| 
 | |
| 
 | |
| @pytest.mark.slow
 | |
| @check_version(mpmath, '0.17')
 | |
| class TestSystematic:
 | |
| 
 | |
|     def test_airyai(self):
 | |
|         # oscillating function, limit range
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[0],
 | |
|                             mpmath.airyai,
 | |
|                             [Arg(-1e8, 1e8)],
 | |
|                             rtol=1e-5)
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[0],
 | |
|                             mpmath.airyai,
 | |
|                             [Arg(-1e3, 1e3)])
 | |
| 
 | |
|     def test_airyai_complex(self):
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[0],
 | |
|                             mpmath.airyai,
 | |
|                             [ComplexArg()])
 | |
| 
 | |
|     def test_airyai_prime(self):
 | |
|         # oscillating function, limit range
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
 | |
|                             mpmath.airyai(z, derivative=1),
 | |
|                             [Arg(-1e8, 1e8)],
 | |
|                             rtol=1e-5)
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
 | |
|                             mpmath.airyai(z, derivative=1),
 | |
|                             [Arg(-1e3, 1e3)])
 | |
| 
 | |
|     def test_airyai_prime_complex(self):
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
 | |
|                             mpmath.airyai(z, derivative=1),
 | |
|                             [ComplexArg()])
 | |
| 
 | |
|     def test_airybi(self):
 | |
|         # oscillating function, limit range
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
 | |
|                             mpmath.airybi(z),
 | |
|                             [Arg(-1e8, 1e8)],
 | |
|                             rtol=1e-5)
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
 | |
|                             mpmath.airybi(z),
 | |
|                             [Arg(-1e3, 1e3)])
 | |
| 
 | |
|     def test_airybi_complex(self):
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
 | |
|                             mpmath.airybi(z),
 | |
|                             [ComplexArg()])
 | |
| 
 | |
|     def test_airybi_prime(self):
 | |
|         # oscillating function, limit range
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
 | |
|                             mpmath.airybi(z, derivative=1),
 | |
|                             [Arg(-1e8, 1e8)],
 | |
|                             rtol=1e-5)
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
 | |
|                             mpmath.airybi(z, derivative=1),
 | |
|                             [Arg(-1e3, 1e3)])
 | |
| 
 | |
|     def test_airybi_prime_complex(self):
 | |
|         assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
 | |
|                             mpmath.airybi(z, derivative=1),
 | |
|                             [ComplexArg()])
 | |
| 
 | |
|     def test_bei(self):
 | |
|         assert_mpmath_equal(sc.bei,
 | |
|                             exception_to_nan(lambda z: mpmath.bei(0, z, **HYPERKW)),
 | |
|                             [Arg(-1e3, 1e3)])
 | |
| 
 | |
|     def test_ber(self):
 | |
|         assert_mpmath_equal(sc.ber,
 | |
|                             exception_to_nan(lambda z: mpmath.ber(0, z, **HYPERKW)),
 | |
|                             [Arg(-1e3, 1e3)])
 | |
| 
 | |
|     def test_bernoulli(self):
 | |
|         assert_mpmath_equal(lambda n: sc.bernoulli(int(n))[int(n)],
 | |
|                             lambda n: float(mpmath.bernoulli(int(n))),
 | |
|                             [IntArg(0, 13000)],
 | |
|                             rtol=1e-9, n=13000)
 | |
| 
 | |
|     def test_besseli(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.iv,
 | |
|             exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)),
 | |
|             [Arg(-1e100, 1e100), Arg()],
 | |
|             atol=1e-270,
 | |
|         )
 | |
| 
 | |
|     def test_besseli_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda v, z: sc.iv(v.real, z),
 | |
|             exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)),
 | |
|             [Arg(-1e100, 1e100), ComplexArg()],
 | |
|         )
 | |
| 
 | |
|     def test_besselj(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.jv,
 | |
|             exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
 | |
|             [Arg(-1e100, 1e100), Arg(-1e3, 1e3)],
 | |
|             ignore_inf_sign=True,
 | |
|         )
 | |
| 
 | |
|         # loss of precision at large arguments due to oscillation
 | |
|         assert_mpmath_equal(
 | |
|             sc.jv,
 | |
|             exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
 | |
|             [Arg(-1e100, 1e100), Arg(-1e8, 1e8)],
 | |
|             ignore_inf_sign=True,
 | |
|             rtol=1e-5,
 | |
|         )
 | |
| 
 | |
|     def test_besselj_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda v, z: sc.jv(v.real, z),
 | |
|             exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
 | |
|             [Arg(), ComplexArg()]
 | |
|         )
 | |
| 
 | |
|     def test_besselk(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.kv,
 | |
|             mpmath.besselk,
 | |
|             [Arg(-200, 200), Arg(0, np.inf)],
 | |
|             nan_ok=False,
 | |
|             rtol=1e-12,
 | |
|         )
 | |
| 
 | |
|     def test_besselk_int(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.kn,
 | |
|             mpmath.besselk,
 | |
|             [IntArg(-200, 200), Arg(0, np.inf)],
 | |
|             nan_ok=False,
 | |
|             rtol=1e-12,
 | |
|         )
 | |
| 
 | |
|     def test_besselk_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda v, z: sc.kv(v.real, z),
 | |
|             exception_to_nan(lambda v, z: mpmath.besselk(v, z, **HYPERKW)),
 | |
|             [Arg(-1e100, 1e100), ComplexArg()],
 | |
|         )
 | |
| 
 | |
|     def test_bessely(self):
 | |
|         def mpbessely(v, x):
 | |
|             r = float(mpmath.bessely(v, x, **HYPERKW))
 | |
|             if abs(r) > 1e305:
 | |
|                 # overflowing to inf a bit earlier is OK
 | |
|                 r = np.inf * np.sign(r)
 | |
|             if abs(r) == 0 and x == 0:
 | |
|                 # invalid result from mpmath, point x=0 is a divergence
 | |
|                 return np.nan
 | |
|             return r
 | |
|         assert_mpmath_equal(
 | |
|             sc.yv,
 | |
|             exception_to_nan(mpbessely),
 | |
|             [Arg(-1e100, 1e100), Arg(-1e8, 1e8)],
 | |
|             n=5000,
 | |
|         )
 | |
| 
 | |
|     def test_bessely_complex(self):
 | |
|         def mpbessely(v, x):
 | |
|             r = complex(mpmath.bessely(v, x, **HYPERKW))
 | |
|             if abs(r) > 1e305:
 | |
|                 # overflowing to inf a bit earlier is OK
 | |
|                 with np.errstate(invalid='ignore'):
 | |
|                     r = np.inf * np.sign(r)
 | |
|             return r
 | |
|         assert_mpmath_equal(
 | |
|             lambda v, z: sc.yv(v.real, z),
 | |
|             exception_to_nan(mpbessely),
 | |
|             [Arg(), ComplexArg()],
 | |
|             n=15000,
 | |
|         )
 | |
| 
 | |
|     def test_bessely_int(self):
 | |
|         def mpbessely(v, x):
 | |
|             r = float(mpmath.bessely(v, x))
 | |
|             if abs(r) == 0 and x == 0:
 | |
|                 # invalid result from mpmath, point x=0 is a divergence
 | |
|                 return np.nan
 | |
|             return r
 | |
|         assert_mpmath_equal(
 | |
|             lambda v, z: sc.yn(int(v), z),
 | |
|             exception_to_nan(mpbessely),
 | |
|             [IntArg(-1000, 1000), Arg(-1e8, 1e8)],
 | |
|         )
 | |
| 
 | |
|     def test_beta(self):
 | |
|         bad_points = []
 | |
| 
 | |
|         def beta(a, b, nonzero=False):
 | |
|             if a < -1e12 or b < -1e12:
 | |
|                 # Function is defined here only at integers, but due
 | |
|                 # to loss of precision this is numerically
 | |
|                 # ill-defined. Don't compare values here.
 | |
|                 return np.nan
 | |
|             if (a < 0 or b < 0) and (abs(float(a + b)) % 1) == 0:
 | |
|                 # close to a zero of the function: mpmath and scipy
 | |
|                 # will not round here the same, so the test needs to be
 | |
|                 # run with an absolute tolerance
 | |
|                 if nonzero:
 | |
|                     bad_points.append((float(a), float(b)))
 | |
|                     return np.nan
 | |
|             return mpmath.beta(a, b)
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.beta,
 | |
|             lambda a, b: beta(a, b, nonzero=True),
 | |
|             [Arg(), Arg()],
 | |
|             dps=400,
 | |
|             ignore_inf_sign=True,
 | |
|         )
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.beta,
 | |
|             beta,
 | |
|             np.array(bad_points),
 | |
|             dps=400,
 | |
|             ignore_inf_sign=True,
 | |
|             atol=1e-11,
 | |
|         )
 | |
| 
 | |
|     def test_betainc(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.betainc,
 | |
|             time_limited()(
 | |
|                 exception_to_nan(
 | |
|                     lambda a, b, x: mpmath.betainc(a, b, 0, x, regularized=True)
 | |
|                 )
 | |
|             ),
 | |
|             [Arg(), Arg(), Arg()],
 | |
|         )
 | |
| 
 | |
|     def test_betaincc(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.betaincc,
 | |
|             time_limited()(
 | |
|                 exception_to_nan(
 | |
|                     lambda a, b, x: mpmath.betainc(a, b, x, 1, regularized=True)
 | |
|                 )
 | |
|             ),
 | |
|             [Arg(), Arg(), Arg()],
 | |
|             dps=400,
 | |
|         )
 | |
| 
 | |
|     def test_binom(self):
 | |
|         bad_points = []
 | |
| 
 | |
|         def binomial(n, k, nonzero=False):
 | |
|             if abs(k) > 1e8*(abs(n) + 1):
 | |
|                 # The binomial is rapidly oscillating in this region,
 | |
|                 # and the function is numerically ill-defined. Don't
 | |
|                 # compare values here.
 | |
|                 return np.nan
 | |
|             if n < k and abs(float(n-k) - np.round(float(n-k))) < 1e-15:
 | |
|                 # close to a zero of the function: mpmath and scipy
 | |
|                 # will not round here the same, so the test needs to be
 | |
|                 # run with an absolute tolerance
 | |
|                 if nonzero:
 | |
|                     bad_points.append((float(n), float(k)))
 | |
|                     return np.nan
 | |
|             return mpmath.binomial(n, k)
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.binom,
 | |
|             lambda n, k: binomial(n, k, nonzero=True),
 | |
|             [Arg(), Arg()],
 | |
|             dps=400,
 | |
|         )
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.binom,
 | |
|             binomial,
 | |
|             np.array(bad_points),
 | |
|             dps=400,
 | |
|             atol=1e-14,
 | |
|         )
 | |
| 
 | |
|     def test_chebyt_int(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, x: sc.eval_chebyt(int(n), x),
 | |
|             exception_to_nan(lambda n, x: mpmath.chebyt(n, x, **HYPERKW)),
 | |
|             [IntArg(), Arg()],
 | |
|             dps=50,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate")
 | |
|     def test_chebyt(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.eval_chebyt,
 | |
|             lambda n, x: time_limited()(
 | |
|                 exception_to_nan(mpmath.chebyt)
 | |
|             )(n, x, **HYPERKW),
 | |
|             [Arg(-101, 101), Arg()],
 | |
|             n=10000,
 | |
|         )
 | |
| 
 | |
|     def test_chebyu_int(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, x: sc.eval_chebyu(int(n), x),
 | |
|             exception_to_nan(lambda n, x: mpmath.chebyu(n, x, **HYPERKW)),
 | |
|             [IntArg(), Arg()],
 | |
|             dps=50,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate")
 | |
|     def test_chebyu(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.eval_chebyu,
 | |
|             lambda n, x: time_limited()(
 | |
|                 exception_to_nan(mpmath.chebyu)
 | |
|             )(n, x, **HYPERKW),
 | |
|             [Arg(-101, 101), Arg()],
 | |
|         )
 | |
| 
 | |
|     def test_chi(self):
 | |
|         def chi(x):
 | |
|             return sc.shichi(x)[1]
 | |
|         assert_mpmath_equal(chi, mpmath.chi, [Arg()])
 | |
|         # check asymptotic series cross-over
 | |
|         assert_mpmath_equal(chi, mpmath.chi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])])
 | |
| 
 | |
|     def test_chi_complex(self):
 | |
|         def chi(z):
 | |
|             return sc.shichi(z)[1]
 | |
|         # chi oscillates as Im[z] -> +- inf, so limit range
 | |
|         assert_mpmath_equal(
 | |
|             chi,
 | |
|             mpmath.chi,
 | |
|             [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
 | |
|             rtol=1e-12,
 | |
|         )
 | |
| 
 | |
|     def test_ci(self):
 | |
|         def ci(x):
 | |
|             return sc.sici(x)[1]
 | |
|         # oscillating function: limit range
 | |
|         assert_mpmath_equal(ci, mpmath.ci, [Arg(-1e8, 1e8)])
 | |
| 
 | |
|     def test_ci_complex(self):
 | |
|         def ci(z):
 | |
|             return sc.sici(z)[1]
 | |
|         # ci oscillates as Re[z] -> +- inf, so limit range
 | |
|         assert_mpmath_equal(
 | |
|             ci,
 | |
|             mpmath.ci,
 | |
|             [ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))],
 | |
|             rtol=1e-8,
 | |
|         )
 | |
| 
 | |
|     def test_cospi(self):
 | |
|         eps = np.finfo(float).eps
 | |
|         assert_mpmath_equal(_cospi, mpmath.cospi, [Arg()], nan_ok=False, rtol=2*eps)
 | |
| 
 | |
|     def test_cospi_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             _cospi,
 | |
|             mpmath.cospi,
 | |
|             [ComplexArg()],
 | |
|             nan_ok=False,
 | |
|             rtol=1e-13,
 | |
|         )
 | |
| 
 | |
|     def test_digamma(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.digamma,
 | |
|             exception_to_nan(mpmath.digamma),
 | |
|             [Arg()],
 | |
|             rtol=1e-12,
 | |
|             dps=50,
 | |
|         )
 | |
| 
 | |
|     def test_digamma_complex(self):
 | |
|         # Test on a cut plane because mpmath will hang. See
 | |
|         # test_digamma_negreal for tests on the negative real axis.
 | |
|         def param_filter(z):
 | |
|             return np.where((z.real < 0) & (np.abs(z.imag) < 1.12), False, True)
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.digamma,
 | |
|             exception_to_nan(mpmath.digamma),
 | |
|             [ComplexArg()],
 | |
|             rtol=1e-13,
 | |
|             dps=40,
 | |
|             param_filter=param_filter
 | |
|         )
 | |
| 
 | |
|     def test_e1(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.exp1,
 | |
|             mpmath.e1,
 | |
|             [Arg()],
 | |
|             rtol=1e-14,
 | |
|         )
 | |
| 
 | |
|     def test_e1_complex(self):
 | |
|         # E_1 oscillates as Im[z] -> +- inf, so limit range
 | |
|         assert_mpmath_equal(
 | |
|             sc.exp1,
 | |
|             mpmath.e1,
 | |
|             [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
 | |
|             rtol=1e-11,
 | |
|         )
 | |
| 
 | |
|         # Check cross-over region
 | |
|         assert_mpmath_equal(
 | |
|             sc.exp1,
 | |
|             mpmath.e1,
 | |
|             (np.linspace(-50, 50, 171)[:, None]
 | |
|              + np.r_[0, np.logspace(-3, 2, 61), -np.logspace(-3, 2, 11)]*1j).ravel(),
 | |
|             rtol=1e-11,
 | |
|         )
 | |
|         assert_mpmath_equal(
 | |
|             sc.exp1,
 | |
|             mpmath.e1,
 | |
|             (np.linspace(-50, -35, 10000) + 0j),
 | |
|             rtol=1e-11,
 | |
|         )
 | |
| 
 | |
|     def test_exprel(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.exprel,
 | |
|             lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
 | |
|             [Arg(a=-np.log(np.finfo(np.float64).max),
 | |
|                  b=np.log(np.finfo(np.float64).max))],
 | |
|         )
 | |
|         assert_mpmath_equal(
 | |
|             sc.exprel,
 | |
|             lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
 | |
|             np.array([1e-12, 1e-24, 0, 1e12, 1e24, np.inf]),
 | |
|             rtol=1e-11,
 | |
|         )
 | |
|         assert_(np.isinf(sc.exprel(np.inf)))
 | |
|         assert_(sc.exprel(-np.inf) == 0)
 | |
| 
 | |
|     def test_expm1_complex(self):
 | |
|         # Oscillates as a function of Im[z], so limit range to avoid loss of precision
 | |
|         assert_mpmath_equal(
 | |
|             sc.expm1,
 | |
|             mpmath.expm1,
 | |
|             [ComplexArg(complex(-np.inf, -1e7), complex(np.inf, 1e7))],
 | |
|         )
 | |
| 
 | |
|     def test_log1p_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.log1p,
 | |
|             lambda x: mpmath.log(x+1),
 | |
|             [ComplexArg()],
 | |
|             dps=60,
 | |
|         )
 | |
| 
 | |
|     def test_log1pmx(self):
 | |
|         assert_mpmath_equal(
 | |
|             _log1pmx,
 | |
|             lambda x: mpmath.log(x + 1) - x,
 | |
|             [Arg()],
 | |
|             dps=60,
 | |
|             rtol=1e-14,
 | |
|         )
 | |
| 
 | |
|     def test_ei(self):
 | |
|         assert_mpmath_equal(sc.expi, mpmath.ei, [Arg()], rtol=1e-11)
 | |
| 
 | |
|     def test_ei_complex(self):
 | |
|         # Ei oscillates as Im[z] -> +- inf, so limit range
 | |
|         assert_mpmath_equal(
 | |
|             sc.expi,
 | |
|             mpmath.ei,
 | |
|             [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
 | |
|             rtol=1e-9,
 | |
|         )
 | |
| 
 | |
|     def test_ellipe(self):
 | |
|         assert_mpmath_equal(sc.ellipe, mpmath.ellipe, [Arg(b=1.0)])
 | |
| 
 | |
|     def test_ellipeinc(self):
 | |
|         assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(-1e3, 1e3), Arg(b=1.0)])
 | |
| 
 | |
|     def test_ellipeinc_largephi(self):
 | |
|         assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(), Arg()])
 | |
| 
 | |
|     def test_ellipf(self):
 | |
|         assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(-1e3, 1e3), Arg()])
 | |
| 
 | |
|     def test_ellipf_largephi(self):
 | |
|         assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(), Arg()])
 | |
| 
 | |
|     def test_ellipk(self):
 | |
|         assert_mpmath_equal(sc.ellipk, mpmath.ellipk, [Arg(b=1.0)])
 | |
|         assert_mpmath_equal(
 | |
|             sc.ellipkm1,
 | |
|             lambda m: mpmath.ellipk(1 - m),
 | |
|             [Arg(a=0.0)],
 | |
|             dps=400,
 | |
|         )
 | |
| 
 | |
|     def test_ellipkinc(self):
 | |
|         def ellipkinc(phi, m):
 | |
|             return mpmath.ellippi(0, phi, m)
 | |
|         assert_mpmath_equal(
 | |
|             sc.ellipkinc,
 | |
|             ellipkinc,
 | |
|             [Arg(-1e3, 1e3), Arg(b=1.0)],
 | |
|             ignore_inf_sign=True,
 | |
|         )
 | |
| 
 | |
|     def test_ellipkinc_largephi(self):
 | |
|         def ellipkinc(phi, m):
 | |
|             return mpmath.ellippi(0, phi, m)
 | |
|         assert_mpmath_equal(
 | |
|             sc.ellipkinc,
 | |
|             ellipkinc,
 | |
|             [Arg(), Arg(b=1.0)],
 | |
|             ignore_inf_sign=True,
 | |
|         )
 | |
| 
 | |
|     def test_ellipfun_sn(self):
 | |
|         def sn(u, m):
 | |
|             # mpmath doesn't get the zero at u = 0--fix that
 | |
|             if u == 0:
 | |
|                 return 0
 | |
|             else:
 | |
|                 return mpmath.ellipfun("sn", u=u, m=m)
 | |
| 
 | |
|         # Oscillating function --- limit range of first argument; the
 | |
|         # loss of precision there is an expected numerical feature
 | |
|         # rather than an actual bug
 | |
|         assert_mpmath_equal(
 | |
|             lambda u, m: sc.ellipj(u, m)[0],
 | |
|             sn,
 | |
|             [Arg(-1e6, 1e6), Arg(a=0, b=1)],
 | |
|             rtol=1e-8,
 | |
|         )
 | |
| 
 | |
|     def test_ellipfun_cn(self):
 | |
|         # see comment in ellipfun_sn
 | |
|         assert_mpmath_equal(
 | |
|             lambda u, m: sc.ellipj(u, m)[1],
 | |
|             lambda u, m: mpmath.ellipfun("cn", u=u, m=m),
 | |
|             [Arg(-1e6, 1e6), Arg(a=0, b=1)],
 | |
|             rtol=1e-8,
 | |
|         )
 | |
| 
 | |
|     def test_ellipfun_dn(self):
 | |
|         # see comment in ellipfun_sn
 | |
|         assert_mpmath_equal(
 | |
|             lambda u, m: sc.ellipj(u, m)[2],
 | |
|             lambda u, m: mpmath.ellipfun("dn", u=u, m=m),
 | |
|             [Arg(-1e6, 1e6), Arg(a=0, b=1)],
 | |
|             rtol=1e-8,
 | |
|         )
 | |
| 
 | |
|     def test_erf(self):
 | |
|         assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [Arg()])
 | |
| 
 | |
|     def test_erf_complex(self):
 | |
|         assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [ComplexArg()], n=200)
 | |
| 
 | |
|     def test_erfc(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.erfc,
 | |
|             exception_to_nan(lambda z: mpmath.erfc(z)),
 | |
|             [Arg()],
 | |
|             rtol=1e-13,
 | |
|         )
 | |
| 
 | |
|     def test_erfc_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.erfc,
 | |
|             exception_to_nan(lambda z: mpmath.erfc(z)),
 | |
|             [ComplexArg()],
 | |
|             n=200,
 | |
|         )
 | |
| 
 | |
|     def test_erfi(self):
 | |
|         assert_mpmath_equal(sc.erfi, mpmath.erfi, [Arg()], n=200)
 | |
| 
 | |
|     def test_erfi_complex(self):
 | |
|         assert_mpmath_equal(sc.erfi, mpmath.erfi, [ComplexArg()], n=200)
 | |
| 
 | |
|     def test_ndtr(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.ndtr,
 | |
|             exception_to_nan(lambda z: mpmath.ncdf(z)),
 | |
|             [Arg()],
 | |
|             n=200,
 | |
|         )
 | |
| 
 | |
|     def test_ndtr_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.ndtr,
 | |
|             lambda z: mpmath.erfc(-z/np.sqrt(2.))/2.,
 | |
|             [ComplexArg(a=complex(-10000, -10000), b=complex(10000, 10000))],
 | |
|             n=400,
 | |
|         )
 | |
| 
 | |
|     def test_log_ndtr(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.log_ndtr,
 | |
|             exception_to_nan(lambda z: mpmath.log(mpmath.ncdf(z))),
 | |
|             [Arg()], n=600, dps=300, rtol=1e-13,
 | |
|         )
 | |
| 
 | |
|     def test_log_ndtr_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.log_ndtr,
 | |
|             exception_to_nan(lambda z: mpmath.log(mpmath.erfc(-z/np.sqrt(2.))/2.)),
 | |
|             [ComplexArg(a=complex(-10000, -100), b=complex(10000, 100))],
 | |
|             n=200, dps=300,
 | |
|         )
 | |
| 
 | |
|     def test_eulernum(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n: sc.euler(n)[-1],
 | |
|             mpmath.eulernum,
 | |
|             [IntArg(1, 10000)],
 | |
|             n=10000,
 | |
|         )
 | |
| 
 | |
|     def test_expint(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.expn,
 | |
|             mpmath.expint,
 | |
|             [IntArg(0, 200), Arg(0, np.inf)],
 | |
|             rtol=1e-13,
 | |
|             dps=160,
 | |
|         )
 | |
| 
 | |
|     def test_fresnels(self):
 | |
|         def fresnels(x):
 | |
|             return sc.fresnel(x)[0]
 | |
|         assert_mpmath_equal(fresnels, mpmath.fresnels, [Arg()])
 | |
| 
 | |
|     def test_fresnelc(self):
 | |
|         def fresnelc(x):
 | |
|             return sc.fresnel(x)[1]
 | |
|         assert_mpmath_equal(fresnelc, mpmath.fresnelc, [Arg()])
 | |
| 
 | |
|     def test_gamma(self):
 | |
|         assert_mpmath_equal(sc.gamma, exception_to_nan(mpmath.gamma), [Arg()])
 | |
| 
 | |
|     def test_gamma_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.gamma,
 | |
|             exception_to_nan(mpmath.gamma),
 | |
|             [ComplexArg()],
 | |
|             rtol=5e-13,
 | |
|         )
 | |
| 
 | |
|     def test_gammainc(self):
 | |
|         # Larger arguments are tested in test_data.py:test_local
 | |
|         assert_mpmath_equal(
 | |
|             sc.gammainc,
 | |
|             lambda z, b: mpmath.gammainc(z, b=b, regularized=True),
 | |
|             [Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)],
 | |
|             nan_ok=False,
 | |
|             rtol=1e-11,
 | |
|         )
 | |
| 
 | |
|     def test_gammaincc(self):
 | |
|         # Larger arguments are tested in test_data.py:test_local
 | |
|         assert_mpmath_equal(
 | |
|             sc.gammaincc,
 | |
|             lambda z, a: mpmath.gammainc(z, a=a, regularized=True),
 | |
|             [Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)],
 | |
|             nan_ok=False,
 | |
|             rtol=1e-11,
 | |
|         )
 | |
| 
 | |
|     def test_gammaln(self):
 | |
|         # The real part of loggamma is log(|gamma(z)|).
 | |
|         def f(z):
 | |
|             return mpmath.loggamma(z).real
 | |
| 
 | |
|         assert_mpmath_equal(sc.gammaln, exception_to_nan(f), [Arg()])
 | |
| 
 | |
|     @pytest.mark.xfail(run=False)
 | |
|     def test_gegenbauer(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.eval_gegenbauer,
 | |
|             exception_to_nan(mpmath.gegenbauer),
 | |
|             [Arg(-1e3, 1e3), Arg(), Arg()],
 | |
|         )
 | |
| 
 | |
|     def test_gegenbauer_int(self):
 | |
|         # Redefine functions to deal with numerical + mpmath issues
 | |
|         def gegenbauer(n, a, x):
 | |
|             # Avoid overflow at large `a` (mpmath would need an even larger
 | |
|             # dps to handle this correctly, so just skip this region)
 | |
|             if abs(a) > 1e100:
 | |
|                 return np.nan
 | |
| 
 | |
|             # Deal with n=0, n=1 correctly; mpmath 0.17 doesn't do these
 | |
|             # always correctly
 | |
|             if n == 0:
 | |
|                 r = 1.0
 | |
|             elif n == 1:
 | |
|                 r = 2*a*x
 | |
|             else:
 | |
|                 r = mpmath.gegenbauer(n, a, x)
 | |
| 
 | |
|             # Mpmath 0.17 gives wrong results (spurious zero) in some cases, so
 | |
|             # compute the value by perturbing the result
 | |
|             if float(r) == 0 and a < -1 and float(a) == int(float(a)):
 | |
|                 r = mpmath.gegenbauer(n, a + mpmath.mpf('1e-50'), x)
 | |
|                 if abs(r) < mpmath.mpf('1e-50'):
 | |
|                     r = mpmath.mpf('0.0')
 | |
| 
 | |
|             # Differing overflow thresholds in scipy vs. mpmath
 | |
|             if abs(r) > 1e270:
 | |
|                 return np.inf
 | |
|             return r
 | |
| 
 | |
|         def sc_gegenbauer(n, a, x):
 | |
|             r = sc.eval_gegenbauer(int(n), a, x)
 | |
|             # Differing overflow thresholds in scipy vs. mpmath
 | |
|             if abs(r) > 1e270:
 | |
|                 return np.inf
 | |
|             return r
 | |
|         assert_mpmath_equal(
 | |
|             sc_gegenbauer,
 | |
|             exception_to_nan(gegenbauer),
 | |
|             [IntArg(0, 100), Arg(-1e9, 1e9), Arg()],
 | |
|             n=40000, dps=100, ignore_inf_sign=True, rtol=1e-6,
 | |
|         )
 | |
| 
 | |
|         # Check the small-x expansion
 | |
|         assert_mpmath_equal(
 | |
|             sc_gegenbauer,
 | |
|             exception_to_nan(gegenbauer),
 | |
|             [IntArg(0, 100), Arg(), FixedArg(np.logspace(-30, -4, 30))],
 | |
|             dps=100, ignore_inf_sign=True,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False)
 | |
|     def test_gegenbauer_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, a, x: sc.eval_gegenbauer(int(n), a.real, x),
 | |
|             exception_to_nan(mpmath.gegenbauer),
 | |
|             [IntArg(0, 100), Arg(), ComplexArg()],
 | |
|         )
 | |
| 
 | |
|     @nonfunctional_tooslow
 | |
|     def test_gegenbauer_complex_general(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, a, x: sc.eval_gegenbauer(n.real, a.real, x),
 | |
|             exception_to_nan(mpmath.gegenbauer),
 | |
|             [Arg(-1e3, 1e3), Arg(), ComplexArg()],
 | |
|         )
 | |
| 
 | |
|     def test_hankel1(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.hankel1,
 | |
|             exception_to_nan(lambda v, x: mpmath.hankel1(v, x, **HYPERKW)),
 | |
|             [Arg(-1e20, 1e20), Arg()],
 | |
|         )
 | |
| 
 | |
|     def test_hankel2(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.hankel2,
 | |
|             exception_to_nan(lambda v, x: mpmath.hankel2(v, x, **HYPERKW)),
 | |
|             [Arg(-1e20, 1e20), Arg()],
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False, reason="issues at intermediately large orders")
 | |
|     def test_hermite(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, x: sc.eval_hermite(int(n), x),
 | |
|             exception_to_nan(mpmath.hermite),
 | |
|             [IntArg(0, 10000), Arg()],
 | |
|         )
 | |
| 
 | |
|     # hurwitz: same as zeta
 | |
| 
 | |
|     def test_hyp0f1(self):
 | |
|         # mpmath reports no convergence unless maxterms is large enough
 | |
|         KW = dict(maxprec=400, maxterms=1500)
 | |
|         # n=500 (non-xslow default) fails for one bad point
 | |
|         assert_mpmath_equal(
 | |
|             sc.hyp0f1,
 | |
|             lambda a, x: mpmath.hyp0f1(a, x, **KW),
 | |
|             [Arg(-1e7, 1e7), Arg(0, 1e5)],
 | |
|             n=5000,
 | |
|         )
 | |
|         # NB: The range of the second parameter ("z") is limited from below
 | |
|         # because of an overflow in the intermediate calculations. The way
 | |
|         # for fix it is to implement an asymptotic expansion for Bessel J
 | |
|         # (similar to what is implemented for Bessel I here).
 | |
| 
 | |
|     def test_hyp0f1_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda a, z: sc.hyp0f1(a.real, z),
 | |
|             exception_to_nan(lambda a, x: mpmath.hyp0f1(a, x, **HYPERKW)),
 | |
|             [Arg(-10, 10), ComplexArg(complex(-120, -120), complex(120, 120))],
 | |
|         )
 | |
|         # NB: The range of the first parameter ("v") are limited by an overflow
 | |
|         # in the intermediate calculations. Can be fixed by implementing an
 | |
|         # asymptotic expansion for Bessel functions for large order.
 | |
| 
 | |
|     def test_hyp1f1(self):
 | |
|         def mpmath_hyp1f1(a, b, x):
 | |
|             try:
 | |
|                 return mpmath.hyp1f1(a, b, x)
 | |
|             except ZeroDivisionError:
 | |
|                 return np.inf
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.hyp1f1,
 | |
|             mpmath_hyp1f1,
 | |
|             [Arg(-50, 50), Arg(1, 50, inclusive_a=False), Arg(-50, 50)],
 | |
|             n=500,
 | |
|             nan_ok=False,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False)
 | |
|     def test_hyp1f1_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             inf_to_nan(lambda a, b, x: sc.hyp1f1(a.real, b.real, x)),
 | |
|             exception_to_nan(lambda a, b, x: mpmath.hyp1f1(a, b, x, **HYPERKW)),
 | |
|             [Arg(-1e3, 1e3), Arg(-1e3, 1e3), ComplexArg()],
 | |
|             n=2000,
 | |
|         )
 | |
| 
 | |
|     @nonfunctional_tooslow
 | |
|     def test_hyp2f1_complex(self):
 | |
|         # SciPy's hyp2f1 seems to have performance and accuracy problems
 | |
|         assert_mpmath_equal(
 | |
|             lambda a, b, c, x: sc.hyp2f1(a.real, b.real, c.real, x),
 | |
|             exception_to_nan(lambda a, b, c, x: mpmath.hyp2f1(a, b, c, x, **HYPERKW)),
 | |
|             [Arg(-1e2, 1e2), Arg(-1e2, 1e2), Arg(-1e2, 1e2), ComplexArg()],
 | |
|             n=10,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False)
 | |
|     def test_hyperu(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.hyperu,
 | |
|             exception_to_nan(lambda a, b, x: mpmath.hyperu(a, b, x, **HYPERKW)),
 | |
|             [Arg(), Arg(), Arg()],
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail_on_32bit("mpmath issue gh-342: "
 | |
|                                 "unsupported operand mpz, long for pow")
 | |
|     def test_igam_fac(self):
 | |
|         def mp_igam_fac(a, x):
 | |
|             return mpmath.power(x, a)*mpmath.exp(-x)/mpmath.gamma(a)
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             _igam_fac,
 | |
|             mp_igam_fac,
 | |
|             [Arg(0, 1e14, inclusive_a=False), Arg(0, 1e14)],
 | |
|             rtol=1e-10,
 | |
|             dps=29,
 | |
|         )
 | |
| 
 | |
|     def test_j0(self):
 | |
|         # The Bessel function at large arguments is j0(x) ~ cos(x + phi)/sqrt(x)
 | |
|         # and at large arguments the phase of the cosine loses precision.
 | |
|         #
 | |
|         # This is numerically expected behavior, so we compare only up to
 | |
|         # 1e8 = 1e15 * 1e-7
 | |
|         assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e3, 1e3)])
 | |
|         assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e8, 1e8)], rtol=1e-5)
 | |
| 
 | |
|     def test_j1(self):
 | |
|         # See comment in test_j0
 | |
|         assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e3, 1e3)])
 | |
|         assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e8, 1e8)], rtol=1e-5)
 | |
| 
 | |
|     @pytest.mark.xfail(run=False)
 | |
|     def test_jacobi(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.eval_jacobi,
 | |
|             exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)),
 | |
|             [Arg(), Arg(), Arg(), Arg()],
 | |
|         )
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, b, c, x: sc.eval_jacobi(int(n), b, c, x),
 | |
|             exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)),
 | |
|             [IntArg(), Arg(), Arg(), Arg()],
 | |
|         )
 | |
| 
 | |
|     def test_jacobi_int(self):
 | |
|         # Redefine functions to deal with numerical + mpmath issues
 | |
|         def jacobi(n, a, b, x):
 | |
|             # Mpmath does not handle n=0 case always correctly
 | |
|             if n == 0:
 | |
|                 return 1.0
 | |
|             return mpmath.jacobi(n, a, b, x)
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, a, b, x: sc.eval_jacobi(int(n), a, b, x),
 | |
|             lambda n, a, b, x: exception_to_nan(jacobi)(n, a, b, x, **HYPERKW),
 | |
|             [IntArg(), Arg(), Arg(), Arg()],
 | |
|             n=20000,
 | |
|             dps=50,
 | |
|         )
 | |
| 
 | |
|     def test_kei(self):
 | |
|         def kei(x):
 | |
|             if x == 0:
 | |
|                 # work around mpmath issue at x=0
 | |
|                 return -pi/4
 | |
|             return exception_to_nan(mpmath.kei)(0, x, **HYPERKW)
 | |
|         assert_mpmath_equal(sc.kei, kei, [Arg(-1e30, 1e30)], n=1000)
 | |
| 
 | |
|     def test_ker(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.ker,
 | |
|             exception_to_nan(lambda x: mpmath.ker(0, x, **HYPERKW)),
 | |
|             [Arg(-1e30, 1e30)],
 | |
|             n=1000,
 | |
|         )
 | |
| 
 | |
|     @nonfunctional_tooslow
 | |
|     def test_laguerre(self):
 | |
|         assert_mpmath_equal(
 | |
|             trace_args(sc.eval_laguerre),
 | |
|             lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW),
 | |
|             [Arg(), Arg()],
 | |
|         )
 | |
| 
 | |
|     def test_laguerre_int(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, x: sc.eval_laguerre(int(n), x),
 | |
|             lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW),
 | |
|             [IntArg(), Arg()],
 | |
|             n=20000,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail_on_32bit("see gh-3551 for bad points")
 | |
|     def test_lambertw_real(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda x, k: sc.lambertw(x, int(k.real)),
 | |
|             lambda x, k: mpmath.lambertw(x, int(k.real)),
 | |
|             [ComplexArg(-np.inf, np.inf), IntArg(0, 10)],
 | |
|             rtol=1e-13, nan_ok=False,
 | |
|         )
 | |
| 
 | |
|     def test_lanczos_sum_expg_scaled(self):
 | |
|         maxgamma = 171.624376956302725
 | |
|         e = np.exp(1)
 | |
|         g = 6.024680040776729583740234375
 | |
| 
 | |
|         def gamma(x):
 | |
|             with np.errstate(over='ignore'):
 | |
|                 fac = ((x + g - 0.5)/e)**(x - 0.5)
 | |
|                 if fac != np.inf:
 | |
|                     res = fac*_lanczos_sum_expg_scaled(x)
 | |
|                 else:
 | |
|                     fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5))
 | |
|                     res = fac*_lanczos_sum_expg_scaled(x)
 | |
|                     res *= fac
 | |
|             return res
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             gamma,
 | |
|             mpmath.gamma,
 | |
|             [Arg(0, maxgamma, inclusive_a=False)],
 | |
|             rtol=1e-13,
 | |
|         )
 | |
| 
 | |
|     @nonfunctional_tooslow
 | |
|     def test_legendre(self):
 | |
|         assert_mpmath_equal(sc.eval_legendre, mpmath.legendre, [Arg(), Arg()])
 | |
| 
 | |
|     def test_legendre_int(self):
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, x: sc.eval_legendre(int(n), x),
 | |
|             lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW),
 | |
|             [IntArg(), Arg()],
 | |
|             n=20000,
 | |
|         )
 | |
| 
 | |
|         # Check the small-x expansion
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, x: sc.eval_legendre(int(n), x),
 | |
|             lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW),
 | |
|             [IntArg(), FixedArg(np.logspace(-30, -4, 20))],
 | |
|         )
 | |
| 
 | |
|     def test_legenp(self):
 | |
|         def lpnm(n, m, z):
 | |
|             try:
 | |
|                 with suppress_warnings() as sup:
 | |
|                     sup.filter(category=DeprecationWarning)
 | |
|                     v = sc.lpmn(m, n, z)[0][-1,-1]
 | |
|             except ValueError:
 | |
|                 return np.nan
 | |
|             if abs(v) > 1e306:
 | |
|                 # harmonize overflow to inf
 | |
|                 v = np.inf * np.sign(v.real)
 | |
|             return v
 | |
| 
 | |
|         def lpnm_2(n, m, z):
 | |
|             v = sc.lpmv(m, n, z)
 | |
|             if abs(v) > 1e306:
 | |
|                 # harmonize overflow to inf
 | |
|                 v = np.inf * np.sign(v.real)
 | |
|             return v
 | |
| 
 | |
|         def legenp(n, m, z):
 | |
|             if (z == 1 or z == -1) and int(n) == n:
 | |
|                 # Special case (mpmath may give inf, we take the limit by
 | |
|                 # continuity)
 | |
|                 if m == 0:
 | |
|                     if n < 0:
 | |
|                         n = -n - 1
 | |
|                     return mpmath.power(mpmath.sign(z), n)
 | |
|                 else:
 | |
|                     return 0
 | |
| 
 | |
|             if abs(z) < 1e-15:
 | |
|                 # mpmath has bad performance here
 | |
|                 return np.nan
 | |
| 
 | |
|             typ = 2 if abs(z) <= 1 else 3
 | |
|             v = exception_to_nan(mpmath.legenp)(n, m, z, type=typ)
 | |
| 
 | |
|             if abs(v) > 1e306:
 | |
|                 # harmonize overflow to inf
 | |
|                 v = mpmath.inf * mpmath.sign(v.real)
 | |
| 
 | |
|             return v
 | |
| 
 | |
|         assert_mpmath_equal(lpnm, legenp, [IntArg(-100, 100), IntArg(-100, 100), Arg()])
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lpnm_2,
 | |
|             legenp,
 | |
|             [IntArg(-100, 100), Arg(-100, 100), Arg(-1, 1)],
 | |
|             atol=1e-10,
 | |
|         )
 | |
| 
 | |
|     def test_legenp_complex_2(self):
 | |
|         def clpnm(n, m, z):
 | |
|             try:
 | |
|                 with suppress_warnings() as sup:
 | |
|                     sup.filter(category=DeprecationWarning)
 | |
|                     return sc.clpmn(m.real, n.real, z, type=2)[0][-1,-1]
 | |
|             except ValueError:
 | |
|                 return np.nan
 | |
| 
 | |
|         def legenp(n, m, z):
 | |
|             if abs(z) < 1e-15:
 | |
|                 # mpmath has bad performance here
 | |
|                 return np.nan
 | |
|             return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=2)
 | |
| 
 | |
|         # mpmath is quite slow here
 | |
|         x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3])
 | |
|         y = np.array([-1e3, -0.5, 0.5, 1.3])
 | |
|         z = (x[:,None] + 1j*y[None,:]).ravel()
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             clpnm,
 | |
|             legenp,
 | |
|             [FixedArg([-2, -1, 0, 1, 2, 10]),
 | |
|              FixedArg([-2, -1, 0, 1, 2, 10]),
 | |
|              FixedArg(z)],
 | |
|             rtol=1e-6,
 | |
|             n=500,
 | |
|         )
 | |
| 
 | |
|     def test_legenp_complex_3(self):
 | |
|         def clpnm(n, m, z):
 | |
|             try:
 | |
|                 with suppress_warnings() as sup:
 | |
|                     sup.filter(category=DeprecationWarning)
 | |
|                     return sc.clpmn(m.real, n.real, z, type=3)[0][-1,-1]
 | |
|             except ValueError:
 | |
|                 return np.nan
 | |
| 
 | |
|         def legenp(n, m, z):
 | |
|             if abs(z) < 1e-15:
 | |
|                 # mpmath has bad performance here
 | |
|                 return np.nan
 | |
|             return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=3)
 | |
| 
 | |
|         # mpmath is quite slow here
 | |
|         x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3])
 | |
|         y = np.array([-1e3, -0.5, 0.5, 1.3])
 | |
|         z = (x[:,None] + 1j*y[None,:]).ravel()
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             clpnm,
 | |
|             legenp,
 | |
|             [FixedArg([-2, -1, 0, 1, 2, 10]),
 | |
|              FixedArg([-2, -1, 0, 1, 2, 10]),
 | |
|              FixedArg(z)],
 | |
|             rtol=1e-6,
 | |
|             n=500,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False, reason="apparently picks wrong function at |z| > 1")
 | |
|     def test_legenq(self):
 | |
|         def lqnm(n, m, z):
 | |
|             return sc.lqmn(m, n, z)[0][-1,-1]
 | |
| 
 | |
|         def legenq(n, m, z):
 | |
|             if abs(z) < 1e-15:
 | |
|                 # mpmath has bad performance here
 | |
|                 return np.nan
 | |
|             return exception_to_nan(mpmath.legenq)(n, m, z, type=2)
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lqnm,
 | |
|             legenq,
 | |
|             [IntArg(0, 100), IntArg(0, 100), Arg()],
 | |
|         )
 | |
| 
 | |
|     @nonfunctional_tooslow
 | |
|     def test_legenq_complex(self):
 | |
|         def lqnm(n, m, z):
 | |
|             return sc.lqmn(int(m.real), int(n.real), z)[0][-1,-1]
 | |
| 
 | |
|         def legenq(n, m, z):
 | |
|             if abs(z) < 1e-15:
 | |
|                 # mpmath has bad performance here
 | |
|                 return np.nan
 | |
|             return exception_to_nan(mpmath.legenq)(int(n.real), int(m.real), z, type=2)
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lqnm,
 | |
|             legenq,
 | |
|             [IntArg(0, 100), IntArg(0, 100), ComplexArg()],
 | |
|             n=100,
 | |
|         )
 | |
| 
 | |
|     def test_lgam1p(self):
 | |
|         def param_filter(x):
 | |
|             # Filter the poles
 | |
|             return np.where((np.floor(x) == x) & (x <= 0), False, True)
 | |
| 
 | |
|         def mp_lgam1p(z):
 | |
|             # The real part of loggamma is log(|gamma(z)|)
 | |
|             return mpmath.loggamma(1 + z).real
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             _lgam1p,
 | |
|             mp_lgam1p,
 | |
|             [Arg()],
 | |
|             rtol=1e-13,
 | |
|             dps=100,
 | |
|             param_filter=param_filter,
 | |
|         )
 | |
| 
 | |
|     def test_loggamma(self):
 | |
|         def mpmath_loggamma(z):
 | |
|             try:
 | |
|                 res = mpmath.loggamma(z)
 | |
|             except ValueError:
 | |
|                 res = complex(np.nan, np.nan)
 | |
|             return res
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.loggamma,
 | |
|             mpmath_loggamma,
 | |
|             [ComplexArg()],
 | |
|             nan_ok=False,
 | |
|             distinguish_nan_and_inf=False,
 | |
|             rtol=5e-14,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False)
 | |
|     def test_pcfd(self):
 | |
|         def pcfd(v, x):
 | |
|             return sc.pbdv(v, x)[0]
 | |
|         assert_mpmath_equal(
 | |
|             pcfd,
 | |
|             exception_to_nan(lambda v, x: mpmath.pcfd(v, x, **HYPERKW)),
 | |
|             [Arg(), Arg()],
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False, reason="it's not the same as the mpmath function --- "
 | |
|                                          "maybe different definition?")
 | |
|     def test_pcfv(self):
 | |
|         def pcfv(v, x):
 | |
|             return sc.pbvv(v, x)[0]
 | |
|         assert_mpmath_equal(
 | |
|             pcfv,
 | |
|             lambda v, x: time_limited()(exception_to_nan(mpmath.pcfv))(v, x, **HYPERKW),
 | |
|             [Arg(), Arg()],
 | |
|             n=1000,
 | |
|         )
 | |
| 
 | |
|     def test_pcfw(self):
 | |
|         def pcfw(a, x):
 | |
|             return sc.pbwa(a, x)[0]
 | |
| 
 | |
|         def dpcfw(a, x):
 | |
|             return sc.pbwa(a, x)[1]
 | |
| 
 | |
|         def mpmath_dpcfw(a, x):
 | |
|             return mpmath.diff(mpmath.pcfw, (a, x), (0, 1))
 | |
| 
 | |
|         # The Zhang and Jin implementation only uses Taylor series and
 | |
|         # is thus accurate in only a very small range.
 | |
|         assert_mpmath_equal(
 | |
|             pcfw,
 | |
|             mpmath.pcfw,
 | |
|             [Arg(-5, 5), Arg(-5, 5)],
 | |
|             rtol=2e-8,
 | |
|             n=100,
 | |
|         )
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             dpcfw,
 | |
|             mpmath_dpcfw,
 | |
|             [Arg(-5, 5), Arg(-5, 5)],
 | |
|             rtol=2e-9,
 | |
|             n=100,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False,
 | |
|                        reason="issues at large arguments (atol OK, rtol not) "
 | |
|                               "and <eps-close to z=0")
 | |
|     def test_polygamma(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.polygamma,
 | |
|             time_limited()(exception_to_nan(mpmath.polygamma)),
 | |
|             [IntArg(0, 1000), Arg()],
 | |
|         )
 | |
| 
 | |
|     def test_rgamma(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.rgamma,
 | |
|             mpmath.rgamma,
 | |
|             [Arg(-8000, np.inf)],
 | |
|             n=5000,
 | |
|             nan_ok=False,
 | |
|             ignore_inf_sign=True,
 | |
|         )
 | |
| 
 | |
|     def test_rgamma_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.rgamma,
 | |
|             exception_to_nan(mpmath.rgamma),
 | |
|             [ComplexArg()],
 | |
|             rtol=5e-13,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(reason=("see gh-3551 for bad points on 32 bit "
 | |
|                                "systems and gh-8095 for another bad "
 | |
|                                "point"))
 | |
|     def test_rf(self):
 | |
|         if _pep440.parse(mpmath.__version__) >= _pep440.Version("1.0.0"):
 | |
|             # no workarounds needed
 | |
|             mppoch = mpmath.rf
 | |
|         else:
 | |
|             def mppoch(a, m):
 | |
|                 # deal with cases where the result in double precision
 | |
|                 # hits exactly a non-positive integer, but the
 | |
|                 # corresponding extended-precision mpf floats don't
 | |
|                 if float(a + m) == int(a + m) and float(a + m) <= 0:
 | |
|                     a = mpmath.mpf(a)
 | |
|                     m = int(a + m) - a
 | |
|                 return mpmath.rf(a, m)
 | |
| 
 | |
|         assert_mpmath_equal(sc.poch, mppoch, [Arg(), Arg()], dps=400)
 | |
| 
 | |
|     def test_sinpi(self):
 | |
|         eps = np.finfo(float).eps
 | |
|         assert_mpmath_equal(
 | |
|             _sinpi,
 | |
|             mpmath.sinpi,
 | |
|             [Arg()],
 | |
|             nan_ok=False,
 | |
|             rtol=2*eps,
 | |
|         )
 | |
| 
 | |
|     def test_sinpi_complex(self):
 | |
|         assert_mpmath_equal(
 | |
|             _sinpi,
 | |
|             mpmath.sinpi,
 | |
|             [ComplexArg()],
 | |
|             nan_ok=False,
 | |
|             rtol=2e-14,
 | |
|         )
 | |
| 
 | |
|     def test_shi(self):
 | |
|         def shi(x):
 | |
|             return sc.shichi(x)[0]
 | |
|         assert_mpmath_equal(shi, mpmath.shi, [Arg()])
 | |
|         # check asymptotic series cross-over
 | |
|         assert_mpmath_equal(shi, mpmath.shi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])])
 | |
| 
 | |
|     def test_shi_complex(self):
 | |
|         def shi(z):
 | |
|             return sc.shichi(z)[0]
 | |
|         # shi oscillates as Im[z] -> +- inf, so limit range
 | |
|         assert_mpmath_equal(
 | |
|             shi,
 | |
|             mpmath.shi,
 | |
|             [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
 | |
|             rtol=1e-12,
 | |
|         )
 | |
| 
 | |
|     def test_si(self):
 | |
|         def si(x):
 | |
|             return sc.sici(x)[0]
 | |
|         assert_mpmath_equal(si, mpmath.si, [Arg()])
 | |
| 
 | |
|     def test_si_complex(self):
 | |
|         def si(z):
 | |
|             return sc.sici(z)[0]
 | |
|         # si oscillates as Re[z] -> +- inf, so limit range
 | |
|         assert_mpmath_equal(
 | |
|             si,
 | |
|             mpmath.si,
 | |
|             [ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))],
 | |
|             rtol=1e-12,
 | |
|         )
 | |
| 
 | |
|     def test_spence(self):
 | |
|         # mpmath uses a different convention for the dilogarithm
 | |
|         def dilog(x):
 | |
|             return mpmath.polylog(2, 1 - x)
 | |
|         # Spence has a branch cut on the negative real axis
 | |
|         assert_mpmath_equal(
 | |
|             sc.spence,
 | |
|             exception_to_nan(dilog),
 | |
|             [Arg(0, np.inf)],
 | |
|             rtol=1e-14,
 | |
|         )
 | |
| 
 | |
|     def test_spence_complex(self):
 | |
|         def dilog(z):
 | |
|             return mpmath.polylog(2, 1 - z)
 | |
|         assert_mpmath_equal(
 | |
|             sc.spence,
 | |
|             exception_to_nan(dilog),
 | |
|             [ComplexArg()],
 | |
|             rtol=1e-14,
 | |
|         )
 | |
| 
 | |
|     def test_spherharm(self):
 | |
|         def spherharm(l, m, theta, phi):
 | |
|             if m > l:
 | |
|                 return np.nan
 | |
|             with suppress_warnings() as sup:
 | |
|                 sup.filter(category=DeprecationWarning)
 | |
|                 return sc.sph_harm(m, l, phi, theta)
 | |
|         assert_mpmath_equal(
 | |
|             spherharm,
 | |
|             mpmath.spherharm,
 | |
|             [IntArg(0, 100), IntArg(0, 100), Arg(a=0, b=pi), Arg(a=0, b=2*pi)],
 | |
|             atol=1e-8,
 | |
|             n=6000,
 | |
|             dps=150,
 | |
|         )
 | |
| 
 | |
|     def test_struveh(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.struve,
 | |
|             exception_to_nan(mpmath.struveh),
 | |
|             [Arg(-1e4, 1e4), Arg(0, 1e4)],
 | |
|             rtol=5e-10,
 | |
|         )
 | |
| 
 | |
|     def test_struvel(self):
 | |
|         def mp_struvel(v, z):
 | |
|             if v < 0 and z < -v and abs(v) > 1000:
 | |
|                 # larger DPS needed for correct results
 | |
|                 old_dps = mpmath.mp.dps
 | |
|                 try:
 | |
|                     mpmath.mp.dps = 500
 | |
|                     return mpmath.struvel(v, z)
 | |
|                 finally:
 | |
|                     mpmath.mp.dps = old_dps
 | |
|             return mpmath.struvel(v, z)
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.modstruve,
 | |
|             exception_to_nan(mp_struvel),
 | |
|             [Arg(-1e4, 1e4), Arg(0, 1e4)],
 | |
|             rtol=5e-10,
 | |
|             ignore_inf_sign=True,
 | |
|         )
 | |
| 
 | |
|     def test_wrightomega_real(self):
 | |
|         def mpmath_wrightomega_real(x):
 | |
|             return mpmath.lambertw(mpmath.exp(x), mpmath.mpf('-0.5'))
 | |
| 
 | |
|         # For x < -1000 the Wright Omega function is just 0 to double
 | |
|         # precision, and for x > 1e21 it is just x to double
 | |
|         # precision.
 | |
|         assert_mpmath_equal(
 | |
|             sc.wrightomega,
 | |
|             mpmath_wrightomega_real,
 | |
|             [Arg(-1000, 1e21)],
 | |
|             rtol=5e-15,
 | |
|             atol=0,
 | |
|             nan_ok=False,
 | |
|         )
 | |
| 
 | |
|     def test_wrightomega(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.wrightomega,
 | |
|             lambda z: _mpmath_wrightomega(z, 25),
 | |
|             [ComplexArg()],
 | |
|             rtol=1e-14,
 | |
|             nan_ok=False,
 | |
|         )
 | |
| 
 | |
|     def test_hurwitz_zeta(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.zeta,
 | |
|             exception_to_nan(mpmath.zeta),
 | |
|             [Arg(a=1, b=1e10, inclusive_a=False), Arg(a=0, inclusive_a=False)],
 | |
|         )
 | |
| 
 | |
|     def test_riemann_zeta(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.zeta,
 | |
|             lambda x: mpmath.zeta(x) if x != 1 else mpmath.inf,
 | |
|             [Arg(-100, 100)],
 | |
|             nan_ok=False,
 | |
|             rtol=5e-13,
 | |
|         )
 | |
| 
 | |
|     def test_zetac(self):
 | |
|         assert_mpmath_equal(
 | |
|             sc.zetac,
 | |
|             lambda x: mpmath.zeta(x) - 1 if x != 1 else mpmath.inf,
 | |
|             [Arg(-100, 100)],
 | |
|             nan_ok=False,
 | |
|             dps=45,
 | |
|             rtol=5e-13,
 | |
|         )
 | |
| 
 | |
|     def test_boxcox(self):
 | |
| 
 | |
|         def mp_boxcox(x, lmbda):
 | |
|             x = mpmath.mp.mpf(x)
 | |
|             lmbda = mpmath.mp.mpf(lmbda)
 | |
|             if lmbda == 0:
 | |
|                 return mpmath.mp.log(x)
 | |
|             else:
 | |
|                 return mpmath.mp.powm1(x, lmbda) / lmbda
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.boxcox,
 | |
|             exception_to_nan(mp_boxcox),
 | |
|             [Arg(a=0, inclusive_a=False), Arg()],
 | |
|             n=200,
 | |
|             dps=60,
 | |
|             rtol=1e-13,
 | |
|         )
 | |
| 
 | |
|     def test_boxcox1p(self):
 | |
| 
 | |
|         def mp_boxcox1p(x, lmbda):
 | |
|             x = mpmath.mp.mpf(x)
 | |
|             lmbda = mpmath.mp.mpf(lmbda)
 | |
|             one = mpmath.mp.mpf(1)
 | |
|             if lmbda == 0:
 | |
|                 return mpmath.mp.log(one + x)
 | |
|             else:
 | |
|                 return mpmath.mp.powm1(one + x, lmbda) / lmbda
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             sc.boxcox1p,
 | |
|             exception_to_nan(mp_boxcox1p),
 | |
|             [Arg(a=-1, inclusive_a=False), Arg()],
 | |
|             n=200,
 | |
|             dps=60,
 | |
|             rtol=1e-13,
 | |
|         )
 | |
| 
 | |
|     def test_spherical_jn(self):
 | |
|         def mp_spherical_jn(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if arg.imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_jn(int(n), z),
 | |
|             exception_to_nan(mp_spherical_jn),
 | |
|             [IntArg(0, 200), Arg(-1e8, 1e8)],
 | |
|             dps=300,
 | |
|             # underflow of `spherical_jn` is a bit premature; see gh-21629
 | |
|             param_filter=(None, lambda z: np.abs(z) > 1e-20),
 | |
|         )
 | |
| 
 | |
|     def test_spherical_jn_complex(self):
 | |
|         def mp_spherical_jn(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if arg.imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_jn(int(n.real), z),
 | |
|             exception_to_nan(mp_spherical_jn),
 | |
|             [IntArg(0, 200), ComplexArg()]
 | |
|         )
 | |
| 
 | |
|     def test_spherical_yn(self):
 | |
|         def mp_spherical_yn(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if arg.imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_yn(int(n), z),
 | |
|             exception_to_nan(mp_spherical_yn),
 | |
|             [IntArg(0, 200), Arg(-1e10, 1e10)],
 | |
|             dps=100,
 | |
|         )
 | |
| 
 | |
|     def test_spherical_yn_complex(self):
 | |
|         def mp_spherical_yn(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if arg.imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_yn(int(n.real), z),
 | |
|             exception_to_nan(mp_spherical_yn),
 | |
|             [IntArg(0, 200), ComplexArg()],
 | |
|         )
 | |
| 
 | |
|     def test_spherical_in(self):
 | |
|         def mp_spherical_in(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if arg.imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_in(int(n), z),
 | |
|             exception_to_nan(mp_spherical_in),
 | |
|             [IntArg(0, 200), Arg()],
 | |
|             dps=200,
 | |
|             atol=10**(-278),
 | |
|         )
 | |
| 
 | |
|     def test_spherical_in_complex(self):
 | |
|         def mp_spherical_in(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if arg.imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_in(int(n.real), z),
 | |
|             exception_to_nan(mp_spherical_in),
 | |
|             [IntArg(0, 200), ComplexArg()],
 | |
|         )
 | |
| 
 | |
|     def test_spherical_kn(self):
 | |
|         def mp_spherical_kn(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.besselk(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if mpmath.mpmathify(z).imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_kn(int(n), z),
 | |
|             exception_to_nan(mp_spherical_kn),
 | |
|             [IntArg(0, 150), Arg()],
 | |
|             dps=100,
 | |
|         )
 | |
| 
 | |
|     @pytest.mark.xfail(run=False,
 | |
|                        reason="Accuracy issues near z = -1 inherited from kv.")
 | |
|     def test_spherical_kn_complex(self):
 | |
|         def mp_spherical_kn(n, z):
 | |
|             arg = mpmath.mpmathify(z)
 | |
|             out = (mpmath.besselk(n + mpmath.mpf(1)/2, arg) /
 | |
|                    mpmath.sqrt(2*arg/mpmath.pi))
 | |
|             if arg.imag == 0:
 | |
|                 return out.real
 | |
|             else:
 | |
|                 return out
 | |
| 
 | |
|         assert_mpmath_equal(
 | |
|             lambda n, z: sc.spherical_kn(int(n.real), z),
 | |
|             exception_to_nan(mp_spherical_kn),
 | |
|             [IntArg(0, 200), ComplexArg()],
 | |
|             dps=200,
 | |
|         )
 |