2025-08-11 12:24:21 +08:00

414 lines
15 KiB
Python

# Copyright 2021 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Callable
from typing import Any
import functools
import operator
from jax._src import api
from jax._src import core
from jax._src import custom_api_util
from jax._src import linear_util as lu
from jax._src import source_info_util
from jax._src import traceback_util
from jax._src import tree_util
from jax._src import util
from jax._src import api_util
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters.batching import not_mapped
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe
from jax._src.interpreters import xla
from jax._src.tree_util import (tree_flatten, tree_map, tree_structure,
tree_unflatten, treedef_tuple)
source_info_util.register_exclusion(__file__)
traceback_util.register_exclusion(__file__)
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
@custom_api_util.register_custom_decorator_type
class custom_vmap:
"""Customize the vmap behavior of a JAX-transformable function.
This decorator is used to customize the behavior of a JAX function under the
:func:`jax.vmap` transformation. A ``custom_vmap``-decorated function will
mostly (see below for caveats) have the same behavior as the underlying
function, except when batched using :py:func:`jax.vmap`. When batched, the
rule defined using :py:func:`~jax.custom_batching.custom_vmap.def_vmap` will
be used.
For example:
>>> @jax.custom_batching.custom_vmap
... def f(x, y):
... return x + y
...
>>> @f.def_vmap
... def f_vmap_rule(axis_size, in_batched, xs, ys):
... assert all(in_batched)
... assert xs.shape[0] == axis_size
... assert ys.shape[0] == axis_size
... out_batched = True
... return xs * ys, out_batched
...
>>> xs = jnp.arange(3)
>>> ys = jnp.arange(1, 4)
>>> jax.vmap(f)(xs, ys) # prints xs * ys instead of xs + ys
Array([0, 2, 6], dtype=int32)
Of note, ``custom_vmap`` functions do not support reverse-mode autodiff. To
customize both vmap and reverse-mode autodiff, combine ``custom_vmap`` with
:py:class:`jax.custom_vjp`. For example:
>>> @jax.custom_vjp
... @jax.custom_batching.custom_vmap
... def f(x, y):
... return jnp.sin(x) * y
...
>>> @f.def_vmap
... def f_vmap_rule(axis_size, in_batched, xs, ys):
... return jnp.cos(xs) * ys, True
...
>>> def f_fwd(x, y):
... return f(x, y), (jnp.cos(x), jnp.sin(x), y)
...
>>> def f_bwd(res, g):
... cos_x, sin_x, y = res
... return (cos_x * g * y, sin_x * g)
...
>>> f.defvjp(f_fwd, f_bwd)
>>> jax.vmap(f)(jnp.zeros(3), jnp.ones(3))
Array([1., 1., 1.], dtype=float32)
>>> jax.grad(f)(jnp.zeros(()), jnp.ones(()))
Array(1., dtype=float32)
Note that the :py:class:`jax.custom_vjp` must be on the outside, wrapping the
``custom_vmap``-decorated function.
"""
fun: Callable[..., Any]
vmap_rule: Callable[..., tuple[Any, Any]] | None
def __init__(self, fun: Callable[..., Any]):
functools.update_wrapper(self, fun)
self.fun = fun
self.vmap_rule = None
__getattr__ = custom_api_util.forward_attr
def def_vmap(
self,
vmap_rule: Callable[..., tuple[Any, Any]],
) -> Callable[..., tuple[Any, Any]]:
"""Define the vmap rule for this custom_vmap function.
Args:
vmap_rule: A function that implements the vmap rule. This function should
accept the following arguments: (1) an integer ``axis_size`` as its
first argument, (2) a pytree of booleans with the same structure as the
inputs to the function, specifying whether each argument is batched,
and (3) the batched arguments. It should return a tuple of the batched
output and a pytree of booleans with the same structure as the output,
specifying whether each output element is batched. See the documentation
for :py:func:`jax.custom_batching.custom_vmap` for some examples.
Returns:
This method passes the rule through, returning ``vmap_rule`` unchanged.
"""
self.vmap_rule = vmap_rule
return vmap_rule
@traceback_util.api_boundary
def __call__(self, *args, **kwargs):
debug_fun = api_util.debug_info("custom_vmap fun", self.fun,
args, kwargs)
try:
args = api_util.resolve_kwargs(self.fun, args, kwargs)
except TypeError as e:
raise TypeError(
"The input arguments to the custom_vmap-decorated function "
f"{debug_fun.func_name} could not be resolved to positional-only "
f"arguments. Binding failed with the error:\n{e}"
) from e
if not self.vmap_rule:
raise AttributeError(
f"No batching rule defined for custom_vmap function {debug_fun.func_name} "
"using def_vmap.")
args_flat, in_tree = tree_flatten(args)
flat_fun, out_tree = api_util.flatten_fun_nokwargs(
lu.wrap_init(self.fun, debug_info=debug_fun),
in_tree)
in_avals = [core.get_aval(x) for x in args_flat]
jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(flat_fun, in_avals)
closed_call = core.ClosedJaxpr(pe.convert_constvars_jaxpr(jaxpr), ())
in_tree = treedef_tuple((tree_structure(consts), in_tree))
assert self.vmap_rule is not None
debug_rule = api_util.debug_info("custom_vmap rule", self.vmap_rule,
(0, args, args), {})
out_flat = custom_vmap_p.bind(*consts, *args_flat,
call=closed_call,
rule=ClosedRule(self.vmap_rule,
debug_rule),
in_tree=in_tree,
out_tree=out_tree())
return tree_unflatten(out_tree(), out_flat)
### utils
# Define a class, instead of making a function closing over `rule`, so
# that we can override __str__
class ClosedRule:
def __init__(self, rule: Callable, debug: core.DebugInfo):
functools.update_wrapper(self, rule)
self.rule = rule
self.debug = debug
def __call__(self, axis_size, all_in_batched, *all_args):
_, args = all_args
consts_batched, in_batched = all_in_batched
assert not any(tree_util.tree_leaves(consts_batched)), consts_batched
return call_rule(self.rule, axis_size, in_batched, args)
def __str__(self):
return str(self.rule)
def ensure_list(xs):
return xs if type(xs) is list else list(xs)
def rule_name(rule):
return getattr(rule, '__name__', '<unnamed rule>')
def call_rule(rule, axis_size, in_batched, args):
return rule(axis_size, ensure_list(in_batched), *args)
def check_vmap_rule_trees(rule, original_out_tree, out_tree, out_batched_tree):
if out_tree != out_batched_tree:
raise ValueError(
'structure of output value and output batching specification returned '
f'by custom vmap rule ({rule_name(rule)}) do not match.\n'
f'Output values: {out_tree}\n'
f'Batching spec: {out_batched_tree}')
if out_tree != original_out_tree:
raise ValueError(
f'structure of output returned by custom vmap rule ({rule_name(rule)}) '
'does not match that of original custom-vmapped function.\n'
f'Original output: {original_out_tree}\n'
f'Rule output: {out_tree}')
# Like batching.bdim_at_front, but doesn't broadcast if not mapped
def maybe_bdim_at_front(x, bdim):
if bdim is not_mapped:
return x
else:
return util.moveaxis(x, bdim, 0)
# Like batching.batch except (a) not curried and (b) returns inferred output
# axes instead of accepting and matching a given spec of output axes. Assumes
# `f` is pytree-flattened
def vmap_unrestricted(f: lu.WrappedFun, *args, in_axes, axis_name, axis_size):
axis_data = batching.AxisData(axis_name, axis_size, None, None)
tag = core.TraceTag()
f, out_axes = batching.batch_subtrace(f, tag, axis_data, in_axes)
outs = f.call_wrapped(*args)
return outs, out_axes()
### custom_vmap_p rules
def custom_vmap_impl(*args, call, rule, in_tree, out_tree):
del rule, in_tree, out_tree
return core.jaxpr_as_fun(call)(*args)
def custom_vmap_batching(args_flat, dims, *, call, rule, in_tree, out_tree):
del call
axis_size, = {x.shape[d] for x, d in zip(args_flat, dims) if d is not None}
args_flat = map(maybe_bdim_at_front, args_flat, dims)
flat_in_batched = [d is not not_mapped for d in dims]
args = tree_unflatten(in_tree, args_flat)
in_batched = tree_unflatten(in_tree, flat_in_batched)
out, out_batched = call_rule(rule, axis_size, in_batched, args)
flat_outs, tree1 = tree_flatten(out)
flat_out_batched, tree2 = tree_flatten(out_batched)
check_vmap_rule_trees(rule, out_tree, tree1, tree2)
flat_out_dims = [0 if b else not_mapped for b in flat_out_batched]
return flat_outs, flat_out_dims
def custom_vmap_abstract_eval(*in_avals, call, **_):
return call.out_avals
def custom_vmap_jvp(primals, tangents, *,
call: core.ClosedJaxpr,
rule: ClosedRule,
in_tree: tree_util.PyTreeDef, out_tree: tree_util.PyTreeDef):
def jvp_of_rule_rule(axis_size: int, in_batched, primals, tangents):
in_batched_ps, in_batched_ts = in_batched
mutually_batched = tree_map(operator.and_, in_batched_ps, in_batched_ts)
extra_batched_ps = tree_map(lambda pb, tb: 0 if pb and not tb else None,
in_batched_ps, in_batched_ts)
extra_batched_ts = tree_map(lambda pb, tb: 0 if tb and not pb else None,
in_batched_ps, in_batched_ts)
out_mutually_batched = lu.Store()
flat_ps_ts, tree_ps_ts = tree_flatten((primals, tangents))
flat_extra_batched_ps_ts, tree_ps_ts2 = tree_flatten(
(extra_batched_ps, extra_batched_ts),
is_leaf=lambda x: x is None)
# TODO(frostig): assert these also equal:
# treedef_tuple((in_tree, in_tree))
# once https://github.com/jax-ml/jax/issues/9066 is fixed
assert tree_ps_ts == tree_ps_ts2
del tree_ps_ts2
def to_jvp(*primals):
out, out_batched = call_rule(rule, axis_size, mutually_batched, primals)
check_vmap_rule_trees(
rule, out_tree, tree_structure(out), tree_structure(out_batched))
out_mutually_batched.store(out_batched)
return out
api_util.save_wrapped_fun_sourceinfo(to_jvp, call.jaxpr.debug_info)
def to_vmap_over_extra_batched_dims(primals, tangents):
return api.jvp(to_jvp, primals, tangents)
to_vmap_over_extra_batched_dims_flat, out_tree2 = api_util.flatten_fun_nokwargs(
lu.wrap_init(to_vmap_over_extra_batched_dims,
# TODO(necula): fix the debug_info calling convention
debug_info=call.jaxpr.debug_info),
tree_ps_ts)
flat_out_ps_ts, flat_out_axes = vmap_unrestricted(
to_vmap_over_extra_batched_dims_flat, *flat_ps_ts,
in_axes=flat_extra_batched_ps_ts,
axis_name=core.no_axis_name, axis_size=axis_size)
n, ragged = divmod(len(flat_out_ps_ts), 2)
assert not ragged
flat_out_ps, flat_out_ts = flat_out_ps_ts[:n], flat_out_ps_ts[n:]
flat_out_axes_p, flat_out_axes_t = flat_out_axes[:n], flat_out_axes[n:]
flat_out_ps = map(maybe_bdim_at_front, flat_out_ps, flat_out_axes_p)
flat_out_extra_batched_ps = [d is not not_mapped for d in flat_out_axes_p]
flat_out_ts = map(maybe_bdim_at_front, flat_out_ts, flat_out_axes_t)
flat_out_extra_batched_ts = [d is not not_mapped for d in flat_out_axes_t]
out_ps, out_ts = tree_unflatten(
out_tree2(), [*flat_out_ps, *flat_out_ts])
out_extra_batched_ps, out_extra_batched_ts = tree_unflatten(
out_tree2(), [*flat_out_extra_batched_ps, *flat_out_extra_batched_ts])
out_batched_ps = tree_map(
operator.or_, out_mutually_batched.val, out_extra_batched_ps)
out_batched_ts = tree_map(
operator.or_, out_mutually_batched.val, out_extra_batched_ts)
return (out_ps, out_ts), (out_batched_ps, out_batched_ts)
tangents = map(ad.instantiate_zeros, tangents)
jvp_call, _ = ad.jvp_jaxpr(call, [True] * len(primals), True)
jvp_in_tree = treedef_tuple((in_tree, in_tree))
jvp_out_tree = treedef_tuple((out_tree, out_tree))
outs = custom_vmap_p.bind(
*primals, *tangents,
call=jvp_call, rule=jvp_of_rule_rule,
in_tree=jvp_in_tree, out_tree=jvp_out_tree)
assert len(outs) % 2 == 0, len(outs)
out_primals, out_tangents = util.split_list(outs, [len(outs) // 2])
return out_primals, out_tangents
custom_vmap_p = core.Primitive('custom_vmap_call')
custom_vmap_p.multiple_results = True
custom_vmap_p.def_impl(custom_vmap_impl)
custom_vmap_p.def_abstract_eval(custom_vmap_abstract_eval)
batching.primitive_batchers[custom_vmap_p] = custom_vmap_batching
ad.primitive_jvps[custom_vmap_p] = custom_vmap_jvp
xla.register_initial_style_primitive(custom_vmap_p)
mlir.register_lowering(custom_vmap_p, mlir.lower_fun(
custom_vmap_impl, multiple_results=True))
# -- custom vmap applications
def tree_split(mask, tree):
lhs = tree_map(lambda l, x: x if l else None, mask, tree)
rhs = tree_map(lambda l, x: None if l else x, mask, tree)
return lhs, rhs
def tree_merge(mask, lhs_tree, rhs_tree):
return tree_map(lambda l, x_l, x_r: x_l if l else x_r,
mask, lhs_tree, rhs_tree)
def sequential_vmap(f):
"""A special case of ``custom_vmap`` that uses a loop.
A function decorated with ``sequential_vmap`` will be called sequentially
within a loop when batched. This is useful for functions that don't natively
support batch dimensions.
For example:
>>> @jax.custom_batching.sequential_vmap
... def f(x):
... jax.debug.print("{}", x)
... return x + 1
...
>>> jax.vmap(f)(jnp.arange(3))
0
1
2
Array([1, 2, 3], dtype=int32)
Where the print statements demonstrate that this :py:func:`~jax.vmap` is being
generated using a loop.
See the documentation for :py:class:`~jax.custom_batching.custom_vmap` for
more details.
"""
from jax._src.lax import control_flow # pytype: disable=import-error
f = custom_vmap(f)
@f.def_vmap
def rule(axis_size, in_batched, *args):
del axis_size
def to_map(mapped_args):
args = tree_merge(in_batched, mapped_args, bcast_args)
return f(*args)
mapped_args, bcast_args = tree_split(in_batched, list(args))
out = control_flow.map(to_map, mapped_args)
out_batched = tree_map(lambda _: True, out)
return out, out_batched
return f