2025-08-11 12:24:21 +08:00

152 lines
4.2 KiB
Python

"""Contains helper functions for opt_einsum testing scripts."""
from typing import Any, Collection, Dict, FrozenSet, Iterable, List, Tuple, overload
from opt_einsum.typing import ArrayIndexType, ArrayType
__all__ = ["compute_size_by_dict", "find_contraction", "flop_count"]
_valid_chars = "abcdefghijklmopqABC"
_sizes = [2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3, 2, 5, 7, 4, 3, 2, 3, 4]
_default_dim_dict = dict(zip(_valid_chars, _sizes))
@overload
def compute_size_by_dict(indices: Iterable[int], idx_dict: List[int]) -> int: ...
@overload
def compute_size_by_dict(indices: Collection[str], idx_dict: Dict[str, int]) -> int: ...
def compute_size_by_dict(indices: Any, idx_dict: Any) -> int:
"""Computes the product of the elements in indices based on the dictionary
idx_dict.
Parameters
----------
indices : iterable
Indices to base the product on.
idx_dict : dictionary
Dictionary of index _sizes
Returns:
-------
ret : int
The resulting product.
Examples:
--------
>>> compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
90
"""
ret = 1
for i in indices: # lgtm [py/iteration-string-and-sequence]
ret *= idx_dict[i]
return ret
def find_contraction(
positions: Collection[int],
input_sets: List[ArrayIndexType],
output_set: ArrayIndexType,
) -> Tuple[FrozenSet[str], List[ArrayIndexType], ArrayIndexType, ArrayIndexType]:
"""Finds the contraction for a given set of input and output sets.
Parameters
----------
positions : iterable
Integer positions of terms used in the contraction.
input_sets : list
List of sets that represent the lhs side of the einsum subscript
output_set : set
Set that represents the rhs side of the overall einsum subscript
Returns:
-------
new_result : set
The indices of the resulting contraction
remaining : list
List of sets that have not been contracted, the new set is appended to
the end of this list
idx_removed : set
Indices removed from the entire contraction
idx_contraction : set
The indices used in the current contraction
Examples:
--------
# A simple dot product test case
>>> pos = (0, 1)
>>> isets = [set('ab'), set('bc')]
>>> oset = set('ac')
>>> find_contraction(pos, isets, oset)
({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
# A more complex case with additional terms in the contraction
>>> pos = (0, 2)
>>> isets = [set('abd'), set('ac'), set('bdc')]
>>> oset = set('ac')
>>> find_contraction(pos, isets, oset)
({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
"""
remaining = list(input_sets)
inputs = (remaining.pop(i) for i in sorted(positions, reverse=True))
idx_contract = frozenset.union(*inputs)
idx_remain = output_set.union(*remaining)
new_result = idx_remain & idx_contract
idx_removed = idx_contract - new_result
remaining.append(new_result)
return new_result, remaining, idx_removed, idx_contract
def flop_count(
idx_contraction: Collection[str],
inner: bool,
num_terms: int,
size_dictionary: Dict[str, int],
) -> int:
"""Computes the number of FLOPS in the contraction.
Parameters
----------
idx_contraction : iterable
The indices involved in the contraction
inner : bool
Does this contraction require an inner product?
num_terms : int
The number of terms in a contraction
size_dictionary : dict
The size of each of the indices in idx_contraction
Returns:
-------
flop_count : int
The total number of FLOPS required for the contraction.
Examples:
--------
>>> flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
30
>>> flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
60
"""
overall_size = compute_size_by_dict(idx_contraction, size_dictionary)
op_factor = max(1, num_terms - 1)
if inner:
op_factor += 1
return overall_size * op_factor
def has_array_interface(array: ArrayType) -> ArrayType:
if hasattr(array, "__array_interface__"):
return True
else:
return False