702 lines
32 KiB
JavaScript
702 lines
32 KiB
JavaScript
// script.js
|
||
|
||
const VIDEO = document.getElementById('webcam');
|
||
const CONNECT_SERIAL_BTN = document.getElementById('connectSerialBtn');
|
||
const DISCONNECT_SERIAL_BTN = document.getElementById('disconnectSerialBtn');
|
||
const LOAD_MODEL_BTN = document.getElementById('loadModelBtn');
|
||
const START_WEBCAM_BTN = document.getElementById('startWebcamBtn');
|
||
const STOP_WEBCAM_BTN = document.getElementById('stopWebcamBtn');
|
||
const MODEL_STATUS = document.getElementById('modelStatus');
|
||
const SERIAL_STATUS = document.getElementById('serialStatus');
|
||
const PREDICTION_OUTPUT = document.getElementById('prediction');
|
||
|
||
let mobilenet; // 这个变量将存储加载后的 MobileNet 模型实例
|
||
let knnClassifier; // 这个变量将存储 KNN 分类器实例
|
||
let classNames = []; // 类别名称将从加载的模型中获取
|
||
let webcamStream = null;
|
||
let isPredicting = false;
|
||
|
||
// Web Serial API 变量
|
||
let serialPort = null;
|
||
let serialWriter = null;
|
||
const SERIAL_BAUD_RATE = 9600;
|
||
const SERIAL_SEND_MIN_INTERVAL = 500; // 最短发送间隔,500ms,用于内部节流
|
||
let lastSerialCommand = ''; // 用于sendToSerialPort内部的节流(避免重复命令+短间隔)
|
||
let lastSerialSendTime = 0;
|
||
|
||
// ===================================
|
||
// 新增变量:追踪串口连接状态,并记录上一次发送到串口的类别命令
|
||
let isSerialConnectedState = false; // 跟踪串口的逻辑连接状态
|
||
let lastSentClassCommand = null; // 上一次"成功通过确认机制并实际发送"的命令
|
||
// ===================================
|
||
|
||
// ===================================
|
||
// 新增变量:用于实现“确认式”发送逻辑
|
||
let pendingCommandToSend = null; // 正在等待确认的命令
|
||
let pendingCommandTimerId = null; // 确认定时器ID
|
||
const CONFIRMATION_DELAY_MS = 100; // 等待 100 毫秒确认 class 是否稳定
|
||
// ===================================
|
||
|
||
|
||
// ===================================
|
||
// Helper Functions (UI Status)
|
||
// ===================================
|
||
function showStatus(element, type, message) {
|
||
element.className = `status-message status-${type}`;
|
||
element.textContent = message;
|
||
}
|
||
|
||
function updateSerialUI(isConnected) {
|
||
CONNECT_SERIAL_BTN.disabled = isConnected;
|
||
DISCONNECT_SERIAL_BTN.disabled = !isConnected;
|
||
isSerialConnectedState = isConnected; // 更新我们维护的串口连接状态
|
||
if (!isConnected) {
|
||
showStatus(SERIAL_STATUS, 'info', '串口未连接。点击 "连接串口" 开始。');
|
||
}
|
||
}
|
||
|
||
function updateWebcamUI(isRunning) {
|
||
START_WEBCAM_BTN.disabled = isRunning;
|
||
STOP_WEBCAM_BTN.disabled = !isRunning;
|
||
}
|
||
|
||
function updateModelUI(isLoaded) {
|
||
LOAD_MODEL_BTN.disabled = false; // 总是允许重新加载模型
|
||
START_WEBCAM_BTN.disabled = !isLoaded; // 模型加载后才能启动摄像头
|
||
}
|
||
|
||
// ===================================
|
||
// Core Logic: Model & Webcam
|
||
// ===================================
|
||
async function initModel() {
|
||
showStatus(MODEL_STATUS, 'info', '正在加载 MobileNet 模型...');
|
||
try {
|
||
// 确保 window.mobilenet 和 window.knnClassifier 库已加载
|
||
if (!window.mobilenet || !window.knnClassifier) {
|
||
showStatus(MODEL_STATUS, 'error', 'TensorFlow.js 库或 KNN 分类器库未加载。请检查 HTML 引入。');
|
||
console.error('TensorFlow.js 库或 KNN 分类器库未加载。');
|
||
return;
|
||
}
|
||
|
||
mobilenet = await window.mobilenet.load({ version: 2, alpha: 1.0 });
|
||
knnClassifier = window.knnClassifier.create();
|
||
showStatus(MODEL_STATUS, 'success', 'MobileNet 模型和 KNN 分类器已加载。');
|
||
updateModelUI(false); // MobileNet 准备好,但KNN数据还未加载
|
||
|
||
// ===== 新增:尝试自动从 CDN 加载 KNN 模型 =====
|
||
// 请替换为你的实际 CDN 模型路径
|
||
const cdnModelBaseUrl = 'https://goood-space-assets.oss-cn-beijing.aliyuncs.com/public/models/'; // 例如:'https://example.com/models/'
|
||
const cdnModelJsonFileName = 'knn-model.json'; // 你的模型json文件名
|
||
const cdnModelBinFileName = 'knn-model.bin'; // 你的模型bin文件名
|
||
|
||
const cdnJsonUrl = `${cdnModelBaseUrl}${cdnModelJsonFileName}`;
|
||
const cdnBinUrl = `${cdnModelBaseUrl}${cdnModelBinFileName}`;
|
||
|
||
console.log(`尝试从 CDN 加载模型: ${cdnJsonUrl}, ${cdnBinUrl}`);
|
||
showStatus(MODEL_STATUS, 'info', '正在尝试从 CDN 自动加载 KNN 模型...');
|
||
|
||
try {
|
||
await loadKNNModel(cdnJsonUrl, cdnBinUrl);
|
||
console.log('CDN 模型自动加载成功。');
|
||
// 如果成功,loadKNNModel 会更新状态
|
||
} catch (cdnError) {
|
||
showStatus(MODEL_STATUS, 'warning', `从 CDN 加载 KNN 模型失败: ${cdnError.message}。您可以尝试手动加载。`);
|
||
console.warn('CDN KNN 模型加载失败:', cdnError);
|
||
updateModelUI(false); // 即使 CDN 失败,用户仍然可以通过按钮加载
|
||
}
|
||
// ==============================================
|
||
|
||
} catch (error) {
|
||
showStatus(MODEL_STATUS, 'error', `模型加载失败: ${error.message}`);
|
||
console.error('MobileNet/KNN加载失败:', error);
|
||
}
|
||
}
|
||
|
||
// 提取 MobileNet 特征
|
||
async function getFeatures(img) {
|
||
if (!mobilenet) {
|
||
throw new Error("MobileNet model is not loaded.");
|
||
}
|
||
return tf.tidy(() => {
|
||
const embeddings = mobilenet.infer(img, true);
|
||
const norm = tf.norm(embeddings);
|
||
const normalized = tf.div(embeddings, norm);
|
||
return normalized;
|
||
});
|
||
}
|
||
|
||
/**
|
||
* 加载 KNN 模型文件,支持 '.json' 和 '.bin' 两部分文件。
|
||
* 支持从 URL 或用户选择的文件加载。
|
||
* @param {string} [jsonUrl] - 可选,KNN 模型 .json 文件的 URL。
|
||
* @param {string} [binUrl] - 可选,KNN 模型 .bin 文件的 URL。
|
||
*/
|
||
async function loadKNNModel(jsonUrl = null, binUrl = null) {
|
||
if (!knnClassifier) {
|
||
showStatus(MODEL_STATUS, 'error', 'KNN 分类器未初始化。请先加载 MobileNet 模型。');
|
||
return;
|
||
}
|
||
|
||
let modelData = null;
|
||
let binData = null;
|
||
let modelName = '未知模型';
|
||
|
||
try {
|
||
if (jsonUrl && binUrl) {
|
||
// 从 CDN URL 加载
|
||
showStatus(MODEL_STATUS, 'info', `正在从 CDN 加载模型配置文件 (${jsonUrl})...`);
|
||
const jsonResponse = await fetch(jsonUrl);
|
||
if (!jsonResponse.ok) {
|
||
throw new Error(`无法从 ${jsonUrl} 加载.json文件: ${jsonResponse.statusText}`);
|
||
}
|
||
modelData = await jsonResponse.json();
|
||
modelName = jsonUrl.split('/').pop();
|
||
|
||
showStatus(MODEL_STATUS, 'info', `正在从 CDN 加载模型权重 (${binUrl})...`);
|
||
const binResponse = await fetch(binUrl);
|
||
if (!binResponse.ok) {
|
||
throw new Error(`无法从 ${binUrl} 加载.bin文件: ${binResponse.statusText}`);
|
||
}
|
||
const arrayBuffer = await binResponse.arrayBuffer();
|
||
binData = new Float32Array(arrayBuffer);
|
||
|
||
// 验证 bin 文件名是否匹配(如果 json 中有定义)
|
||
if (modelData.dataFile && !binUrl.endsWith(modelData.dataFile)) {
|
||
console.warn(`CDN 加载警告:.bin URL (${binUrl}) 与 .json 中定义的 dataFile (${modelData.dataFile}) 不匹配。继续加载。`);
|
||
}
|
||
|
||
} else {
|
||
// 从用户本地文件加载 (原逻辑不变)
|
||
const inputJson = document.createElement('input');
|
||
inputJson.type = 'file';
|
||
inputJson.accept = '.json';
|
||
inputJson.multiple = false;
|
||
|
||
showStatus(MODEL_STATUS, 'info', '请先选择 KNN 模型配置文件 (.json)...');
|
||
|
||
await new Promise((resolve, reject) => {
|
||
inputJson.onchange = async (e) => {
|
||
const jsonFile = e.target.files[0];
|
||
if (!jsonFile) {
|
||
showStatus(MODEL_STATUS, 'info', '未选择 .json 文件。');
|
||
updateModelUI(false);
|
||
return reject(new Error('No JSON file selected.'));
|
||
}
|
||
|
||
showStatus(MODEL_STATUS, 'info', `正在解析 ${jsonFile.name}...`);
|
||
modelName = jsonFile.name;
|
||
|
||
try {
|
||
const reader = new FileReader();
|
||
const jsonText = await new Promise((res, rej) => {
|
||
reader.onload = () => res(reader.result);
|
||
reader.onerror = () => rej(reader.error);
|
||
reader.readAsText(jsonFile);
|
||
});
|
||
modelData = JSON.parse(jsonText);
|
||
|
||
if (!modelData.dataFile) {
|
||
console.warn('模型JSON文件不包含 "dataFile" 字段,尝试以旧的单文件JSON格式加载。');
|
||
// 对于旧的单文件模型,直接加载并结束
|
||
await loadSingleJsonModel(modelData);
|
||
return resolve(); // 成功加载旧模型,返回
|
||
}
|
||
|
||
} catch (error) {
|
||
showStatus(MODEL_STATUS, 'error', `解析 .json 文件失败: ${error.message}`);
|
||
console.error('解析 .json 失败:', error);
|
||
updateModelUI(false);
|
||
return reject(error);
|
||
}
|
||
|
||
const inputBin = document.createElement('input');
|
||
inputBin.type = 'file';
|
||
inputBin.accept = '.bin';
|
||
inputBin.multiple = false;
|
||
|
||
showStatus(MODEL_STATUS, 'info', `已加载 .json 文件。请选择对应的权重文件 "${modelData.dataFile}" (.bin)...`);
|
||
|
||
inputBin.onchange = async (eBin) => {
|
||
const binFile = eBin.target.files[0];
|
||
if (!binFile) {
|
||
showStatus(MODEL_STATUS, 'info', '未选择 .bin 文件。');
|
||
updateModelUI(false);
|
||
return reject(new Error('No BIN file selected.'));
|
||
}
|
||
|
||
if (binFile.name !== modelData.dataFile) {
|
||
showStatus(MODEL_STATUS, 'error', `选择的 .bin 文件名 "${binFile.name}" 与 .json 中定义的 "${modelData.dataFile}" 不匹配!请选择正确的文件。`);
|
||
updateModelUI(false);
|
||
return reject(new Error('BIN file name mismatch.'));
|
||
}
|
||
|
||
showStatus(MODEL_STATUS, 'info', `正在读取 ${binFile.name} (二进制权重文件)...`);
|
||
try {
|
||
const reader = new FileReader();
|
||
const arrayBuffer = await new Promise((res, rej) => {
|
||
reader.onload = () => res(reader.result);
|
||
reader.onerror = () => rej(reader.error);
|
||
reader.readAsArrayBuffer(binFile);
|
||
});
|
||
binData = new Float32Array(arrayBuffer);
|
||
resolve(); // 成功获取到 binData,解析流程继续
|
||
} catch (error) {
|
||
showStatus(MODEL_STATUS, 'error', `读取 .bin 文件失败: ${error.message}`);
|
||
console.error('读取 .bin 失败:', error);
|
||
updateModelUI(false);
|
||
return reject(error);
|
||
}
|
||
};
|
||
inputBin.click();
|
||
};
|
||
inputJson.click();
|
||
}); // 结束 Promise 包装的回调
|
||
}
|
||
|
||
// 如果 modelData 为 null (意味着旧的单文件JSON模型已在上面被处理并返回),则停止后续处理
|
||
if (!modelData) {
|
||
return;
|
||
}
|
||
|
||
// 执行加载 KNN 分类器的核心逻辑
|
||
if (modelData && binData) { // 仅当同时有 modelData 和 binData 时才尝试加载
|
||
knnClassifier.clearAllClasses();
|
||
|
||
Object.keys(modelData.dataset).forEach(label => {
|
||
const classDataMeta = modelData.dataset[label];
|
||
const startFloat32ElementIndex = classDataMeta.start;
|
||
const numFloat32Elements = classDataMeta.length;
|
||
|
||
const featureDim = modelData.featureDim || 1280;
|
||
|
||
// 检查 binData 是否足够大以包含所需的数据
|
||
if (startFloat32ElementIndex + numFloat32Elements > binData.length) {
|
||
throw new Error(`模型数据错误: 类别 ${label} 的数据超出 .bin 文件范围。`);
|
||
}
|
||
|
||
const classFeatures = binData.subarray(startFloat32ElementIndex, startFloat32ElementIndex + numFloat32Elements);
|
||
|
||
if (classFeatures.length === 0) {
|
||
console.warn(`类别 ${label} 没有找到特征数据,跳过。`);
|
||
return;
|
||
}
|
||
|
||
if (classFeatures.length % featureDim !== 0) {
|
||
const actualSamples = classFeatures.length / featureDim;
|
||
console.error(
|
||
`--- 类别: ${label} ---`,
|
||
`起始 Float32 元素索引: ${startFloat32ElementIndex}`,
|
||
`该类别 Float32 元素数量: ${numFloat32Elements}`,
|
||
`ERROR: 特征数据长度 (${classFeatures.length} 个 Float32 元素) 与特征维度 (${featureDim}) 不匹配!` +
|
||
`实际样本数计算为 ${actualSamples} (预期为整数)。`,
|
||
`请检查您的模型导出逻辑和训练数据的完整性。`
|
||
);
|
||
throw new Error("模型数据完整性错误:特征数据长度与维度不匹配。");
|
||
}
|
||
|
||
const numSamples = classFeatures.length / featureDim;
|
||
|
||
for (let i = 0; i < numSamples; i++) {
|
||
const startIndex = i * featureDim;
|
||
const endIndex = (i + 1) * featureDim;
|
||
const sampleFeatures = classFeatures.subarray(startIndex, endIndex);
|
||
|
||
const sampleTensor = tf.tensor(sampleFeatures, [1, featureDim]);
|
||
|
||
knnClassifier.addExample(sampleTensor, parseInt(label));
|
||
tf.dispose(sampleTensor); // 及时释放 Tensor 内存
|
||
}
|
||
});
|
||
|
||
if (modelData.classList && Array.isArray(modelData.classList)) {
|
||
classNames = modelData.classList.map(c => c.name);
|
||
} else {
|
||
console.warn('模型JSON中未找到 classList 字段或格式不正确,使用默认类别名称。');
|
||
// 如果没有 classList,尝试从 dataset 的键值来生成
|
||
classNames = Object.keys(modelData.dataset).map(key => `Class ${parseInt(key) + 1}`);
|
||
}
|
||
|
||
showStatus(MODEL_STATUS, 'success', `KNN 模型 "${modelName}" 加载成功!类别: ${classNames.join(', ')}。`);
|
||
updateModelUI(true); // 模型已加载,可以启动摄像头
|
||
|
||
} else if (modelData && !binData && !jsonUrl) {
|
||
// 如果只有 modelData 且不是从 CDN 加载,说明可能是单文件旧格式,但之前的逻辑没成功处理
|
||
// 应该是由 loadSingleJsonModel 捕获,这里作为 fallback
|
||
showStatus(MODEL_STATUS, 'error', '未知模型加载状态:仅有 JSON 数据,没有 BIN 数据。');
|
||
updateModelUI(false);
|
||
}
|
||
|
||
} catch (error) {
|
||
showStatus(MODEL_STATUS, 'error', `加载 KNN 模型失败: ${error.message}`);
|
||
console.error('加载 KNN 模型总失败:', error);
|
||
updateModelUI(false);
|
||
// 重新抛出错误,以便 initModel 可以捕获 CDN 加载失败的情况
|
||
throw error;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 辅助函数:处理旧的单文件JSON模型格式( dataset 字段直接包含数据而不是偏移量)
|
||
* @param {object} modelData - 已解析的 JSON 模型数据
|
||
* @returns {Promise<void>}
|
||
*/
|
||
async function loadSingleJsonModel(modelData) {
|
||
try {
|
||
knnClassifier.clearAllClasses();
|
||
Object.keys(modelData.dataset).forEach(key => {
|
||
const data = modelData.dataset[key];
|
||
const featureDim = modelData.featureDim || 1280;
|
||
if (data.length % featureDim !== 0) {
|
||
throw new Error(`类别 ${key} 的特征数据长度 ${data.length} 与特征维度 ${featureDim} 不匹配!`);
|
||
}
|
||
const numSamples = data.length / featureDim;
|
||
const tensor = tf.tensor(data, [numSamples, featureDim]);
|
||
knnClassifier.addExample(tensor, parseInt(key));
|
||
tf.dispose(tensor); // 及时释放 Tensor 内存
|
||
});
|
||
|
||
if (modelData.classList && Array.isArray(modelData.classList)) {
|
||
classNames = modelData.classList.map(c => c.name);
|
||
} else if (modelData.classNames && Array.isArray(modelData.classNames)) {
|
||
classNames = modelData.classNames;
|
||
} else {
|
||
console.warn('模型JSON中未找到 classList/classNames 字段,使用默认类别名称。');
|
||
classNames = Object.keys(modelData.dataset).map(key => `Class ${parseInt(key) + 1}`);
|
||
}
|
||
|
||
showStatus(MODEL_STATUS, 'success', `模型 (单文件JSON格式) 加载成功!类别: ${classNames.join(', ')}。`);
|
||
updateModelUI(true);
|
||
} catch (error) {
|
||
showStatus(MODEL_STATUS, 'error', `加载单文件JSON模型失败: ${error.message}`);
|
||
console.error('加载单文件JSON模型失败:', error);
|
||
updateModelUI(false);
|
||
throw error; // 重新抛出错误
|
||
}
|
||
}
|
||
|
||
|
||
async function startWebcam() {
|
||
if (webcamStream) return;
|
||
|
||
if (!knnClassifier || knnClassifier.getNumClasses() === 0) {
|
||
showStatus(MODEL_STATUS, 'error', '请先加载训练好的模型!');
|
||
return;
|
||
}
|
||
|
||
try {
|
||
const stream = await navigator.mediaDevices.getUserMedia({ video: { facingMode: 'user' }, audio: false });
|
||
VIDEO.srcObject = stream;
|
||
webcamStream = stream;
|
||
updateWebcamUI(true);
|
||
|
||
VIDEO.onloadeddata = () => {
|
||
// ===================================
|
||
// 启动摄像头时,重置所有发送状态,确保第一次识别结果可发送
|
||
if (pendingCommandTimerId) {
|
||
clearTimeout(pendingCommandTimerId);
|
||
pendingCommandTimerId = null;
|
||
}
|
||
pendingCommandToSend = null;
|
||
lastSentClassCommand = null;
|
||
// ===================================
|
||
isPredicting = true;
|
||
predictLoop();
|
||
showStatus(MODEL_STATUS, 'info', '摄像头已启动,开始实时预测...');
|
||
};
|
||
|
||
} catch (error) {
|
||
showStatus(MODEL_STATUS, 'error', `无法访问摄像头: ${error.message}`);
|
||
console.error('启动摄像头失败:', error);
|
||
updateWebcamUI(false);
|
||
}
|
||
}
|
||
|
||
function stopWebcam() {
|
||
if (webcamStream) {
|
||
webcamStream.getTracks().forEach(track => track.stop());
|
||
webcamStream = null;
|
||
}
|
||
isPredicting = false;
|
||
VIDEO.srcObject = null;
|
||
updateWebcamUI(false);
|
||
PREDICTION_OUTPUT.textContent = '等待识别...';
|
||
showStatus(MODEL_STATUS, 'info', '摄像头已停止。');
|
||
|
||
// ===================================
|
||
// 停止摄像头时,清除任何待确认的命令,并发送“停止”或“复位”命令
|
||
if (pendingCommandTimerId) {
|
||
clearTimeout(pendingCommandTimerId);
|
||
pendingCommandTimerId = null;
|
||
}
|
||
pendingCommandToSend = null;
|
||
|
||
// 假设 '0' 是停止/复位命令,并且只有当上次发送的不是 '0' 时才发送
|
||
if (lastSentClassCommand !== '0') {
|
||
sendToSerialPort('0');
|
||
}
|
||
lastSentClassCommand = null; // 重置,确保下次启动摄像头时能发送初始状态
|
||
// ===================================
|
||
}
|
||
|
||
// ============== 重要的修改区域 start ==============
|
||
// 定义一个全局变量,用于存储当前帧识别到的命令,供 setTimeout 回调使用
|
||
let currentCommandInFrame = '0'; // 初始值默认是 '0' (复位/无动作)
|
||
|
||
async function predictLoop() {
|
||
if (!isPredicting) return;
|
||
|
||
if (VIDEO.readyState === 4 && VIDEO.videoWidth > 0 && VIDEO.videoHeight > 0) {
|
||
let commandCandidate = '0'; // 每次循环开始时,将当前帧的候选命令初始化为'0'
|
||
|
||
try {
|
||
const features = await getFeatures(VIDEO);
|
||
const k = 3;
|
||
|
||
if (!knnClassifier || knnClassifier.getNumClasses() === 0) {
|
||
features.dispose();
|
||
PREDICTION_OUTPUT.textContent = 'KNN 分类器未就绪或无数据。';
|
||
commandCandidate = '0'; // 使用默认命令
|
||
} else {
|
||
const prediction = await knnClassifier.predictClass(features, k);
|
||
features.dispose(); // 及时释放 Tensor 内存
|
||
|
||
if (prediction && prediction.confidences) {
|
||
let maxConfidence = 0;
|
||
let predictedClassIndex = -1;
|
||
|
||
const confidencesArray = Object.entries(prediction.confidences).map(([key, value]) => ({ index: parseInt(key), confidence: value }));
|
||
|
||
confidencesArray.forEach(({ index, confidence }) => {
|
||
if (confidence > maxConfidence) {
|
||
maxConfidence = confidence;
|
||
predictedClassIndex = index;
|
||
}
|
||
});
|
||
|
||
const confidenceThreshold = 0.75; // 75%置信度
|
||
if (predictedClassIndex !== -1 && maxConfidence > confidenceThreshold) {
|
||
const className = classNames[predictedClassIndex] || `Class ${predictedClassIndex + 1}`;
|
||
const percentage = (maxConfidence * 100).toFixed(1);
|
||
PREDICTION_OUTPUT.textContent = `识别为: ${className} (${percentage}%)`;
|
||
|
||
// 根据类别设置本帧的候选命令
|
||
if (predictedClassIndex === 0) {
|
||
commandCandidate = '1';
|
||
} else if (predictedClassIndex === 1) {
|
||
commandCandidate = '2';
|
||
} else {
|
||
commandCandidate = '0'; // 未匹配到特定类别,或默认复位
|
||
}
|
||
} else {
|
||
PREDICTION_OUTPUT.textContent = `未知或不确定... (最高置信度: ${(maxConfidence * 100).toFixed(1)}%)`;
|
||
commandCandidate = '0'; // 不确定也发送'0'回退
|
||
}
|
||
} else {
|
||
PREDICTION_OUTPUT.textContent = '无法识别。';
|
||
commandCandidate = '0'; // 无法识别也发送 '0' 回退
|
||
}
|
||
}
|
||
} catch (error) {
|
||
console.error('预测错误:', error);
|
||
PREDICTION_OUTPUT.textContent = `预测错误: ${error.message}`;
|
||
commandCandidate = '0'; // 错误时也发送'0'
|
||
}
|
||
|
||
// =========================================================
|
||
// 核心逻辑:确认式发送机制 (Persistence / Confirmation)
|
||
// =========================================================
|
||
|
||
// 更新全局变量 currentCommandInFrame,指示当前帧的预测结果
|
||
currentCommandInFrame = commandCandidate;
|
||
|
||
// 只有当当前帧的候选命令与上一次实际发送的命令不同时,才进入确认流程
|
||
if (currentCommandInFrame !== lastSentClassCommand) {
|
||
// 如果目前没有待确认的命令,或者待确认的命令与当前不同
|
||
if (pendingCommandToSend === null || pendingCommandToSend !== currentCommandInFrame) {
|
||
if (pendingCommandTimerId) {
|
||
clearTimeout(pendingCommandTimerId); // 清除旧的等待定时器
|
||
pendingCommandTimerId = null;
|
||
// console.log(`[${new Date().toLocaleTimeString()}] 命令在确认前再次变化,取消旧的确认定时器.`);
|
||
}
|
||
|
||
pendingCommandToSend = currentCommandInFrame; // 设置新的待确认命令
|
||
|
||
// 设置一个定时器,在 CONFIRMATION_DELAY_MS 后进行确认
|
||
pendingCommandTimerId = setTimeout(async () => {
|
||
// 当定时器触发时,再次检查全局的 currentCommandInFrame
|
||
// 如果它仍然与我们开始等待的命令相同,则确认并发送
|
||
if (currentCommandInFrame === pendingCommandToSend) {
|
||
console.log(`[${new Date().toLocaleTimeString()}] 确认命令 "${pendingCommandToSend}" 稳定,正在发送。`);
|
||
await sendToSerialPort(pendingCommandToSend);
|
||
lastSentClassCommand = pendingCommandToSend; // 更新上一次实际发送的命令
|
||
} else {
|
||
console.log(`[${new Date().toLocaleTimeString()}] 命令在确认期内再次变化 (${pendingCommandToSend} -> ${currentCommandInFrame}),不发送。`);
|
||
}
|
||
pendingCommandToSend = null; // 清理待确认状态
|
||
pendingCommandTimerId = null; // 清理定时器ID
|
||
}, CONFIRMATION_DELAY_MS);
|
||
|
||
// console.log(`[${new Date().toLocaleTimeString()}] 检测到新候选命令 "${currentCommandInFrame}",启动 ${CONFIRMATION_DELAY_MS}ms 确认计时器。`);
|
||
}
|
||
// 如果 currentCommandInFrame 1. 仍然与 pendingCommandToSend 相同
|
||
// 并且 2. 不同于 lastSentClassCommand
|
||
// 说明它处在“正在等待确认”的状态,不需要做任何事情,让当前定时器继续运行
|
||
} else { // 当前帧的命令与上次实际发送的命令相同
|
||
// 如果已经发送了相同的命令,或者回到了已发送的命令,那么清除待确认定时器
|
||
if (pendingCommandTimerId) {
|
||
clearTimeout(pendingCommandTimerId);
|
||
pendingCommandTimerId = null;
|
||
pendingCommandToSend = null; // 清理待确认状态
|
||
// console.log(`[${new Date().toLocaleTimeString()}] 当前命令 "${currentCommandInFrame}" 与上次发送命令相同,或回摆,取消所有待确认发送。`);
|
||
}
|
||
}
|
||
// =========================================================
|
||
}
|
||
requestAnimationFrame(predictLoop); // 继续下一帧预测
|
||
}
|
||
// ============== 重要的修改区域 end ==============
|
||
|
||
|
||
// ===================================
|
||
// Web Serial API Logic
|
||
// ===================================
|
||
async function checkWebSerialCompatibility() {
|
||
if ('serial' in navigator) {
|
||
showStatus(SERIAL_STATUS, 'info', 'Web Serial API 可用!');
|
||
CONNECT_SERIAL_BTN.disabled = false;
|
||
} else {
|
||
showStatus(SERIAL_STATUS, 'error', 'Web Serial API 在此浏览器中不可用。请使用最新版 Chrome!');
|
||
CONNECT_SERIAL_BTN.disabled = true;
|
||
}
|
||
}
|
||
|
||
async function connectSerial() {
|
||
showStatus(SERIAL_STATUS, 'info', '正在请求连接串口...');
|
||
try {
|
||
serialPort = await navigator.serial.requestPort();
|
||
|
||
serialPort.addEventListener('disconnect', () => {
|
||
const disconnectTime = new Date().toLocaleString();
|
||
console.warn(`[${disconnectTime}] ❗️❗️❗️ 串口已断开连接事件触发! `); // 强调日志
|
||
showStatus(SERIAL_STATUS, 'error', '串口连接已丢失!');
|
||
disconnectSerial();
|
||
});
|
||
|
||
await serialPort.open({ baudRate: SERIAL_BAUD_RATE });
|
||
console.log('串口已成功打开。尝试获取写入器...');
|
||
serialWriter = serialPort.writable.getWriter();
|
||
console.log('写入器已获取。');
|
||
|
||
console.log('串口已连接并打开。');
|
||
showStatus(SERIAL_STATUS, 'success', `串口已连接 (Baud: ${SERIAL_BAUD_RATE})`);
|
||
updateSerialUI(true); // 更新状态为已连接
|
||
} catch (error) {
|
||
console.error('连接串口失败:', error);
|
||
if (error.name === 'NotFoundError') {
|
||
showStatus(SERIAL_STATUS, 'warning', '连接串口请求已取消或未选择端口。请选择一个设备。');
|
||
} else if (error.name === 'SecurityError') {
|
||
showStatus(SERIAL_STATUS, 'error', `连接串口失败: ${error.message}。请确保您在安全上下文 (HTTPS 或 localhost) 中运行。`);
|
||
} else {
|
||
showStatus(SERIAL_STATUS, 'error', `连接串口失败: ${error.message}`);
|
||
}
|
||
updateSerialUI(false); // 更新状态为未连接
|
||
}
|
||
}
|
||
|
||
async function disconnectSerial() {
|
||
console.trace(`[${new Date().toLocaleString()}] disconnectSerial() called`);
|
||
|
||
if (!isSerialConnectedState && !serialPort && !serialWriter) {
|
||
console.log('Already in disconnected state, skipping further cleanup.');
|
||
return;
|
||
}
|
||
|
||
// ===================================
|
||
// 断开连接时,清除任何待确认的定时器和状态
|
||
if (pendingCommandTimerId) {
|
||
clearTimeout(pendingCommandTimerId);
|
||
pendingCommandTimerId = null;
|
||
}
|
||
pendingCommandToSend = null;
|
||
// ===================================
|
||
|
||
try {
|
||
if (serialWriter) {
|
||
await serialWriter.close();
|
||
serialWriter = null;
|
||
}
|
||
if (serialPort && serialPort.readable) {
|
||
const reader = serialPort.readable.getReader();
|
||
if (reader) {
|
||
await reader.cancel();
|
||
reader.releaseLock();
|
||
}
|
||
}
|
||
if (serialPort && serialPort.isOpen) {
|
||
await serialPort.close();
|
||
}
|
||
serialPort = null;
|
||
console.log('串口已断开。');
|
||
showStatus(SERIAL_STATUS, 'info', '串口已断开。');
|
||
} catch (error) {
|
||
console.error('断开串口失败或串口已处于非连接状态:', error);
|
||
showStatus(SERIAL_STATUS, 'error', `断开串口失败: ${error.message}`);
|
||
} finally {
|
||
updateSerialUI(false); // 无论如何都确保UI和状态更新为断开
|
||
lastSentClassCommand = null; // 断开连接时,重置上一次发送的命令,确保重连后第一次变化能发送
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 低级串口发送函数。包含内部的频繁发送节流。
|
||
* @param {string} command - 要发送的命令字符串。
|
||
*/
|
||
async function sendToSerialPort(command) {
|
||
if (!isSerialConnectedState) {
|
||
// console.warn('串口已断开(逻辑状态),无法发送命令。');
|
||
return;
|
||
}
|
||
|
||
if (!serialWriter) {
|
||
console.warn(`[${new Date().toLocaleString()}] 串口连接状态为 true,但 serialWriter 不可用。尝试重置串口连接。`);
|
||
disconnectSerial();
|
||
return;
|
||
}
|
||
|
||
// 避免频繁发送相同的命令 (sendToSerialPort 内部的节流)
|
||
const currentTime = new Date().getTime();
|
||
if (command === lastSerialCommand && (currentTime - lastSerialSendTime < SERIAL_SEND_MIN_INTERVAL)) {
|
||
return; // 命令相同且发送间隔太短,不发送
|
||
}
|
||
|
||
try {
|
||
const encoder = new TextEncoder();
|
||
const data = encoder.encode(command + '\n');
|
||
await serialWriter.write(data);
|
||
console.log(`[${new Date().toLocaleTimeString()}] 实际发送串口命令: ${command}`);
|
||
lastSerialCommand = command; // 更新内部节流用的命令
|
||
lastSerialSendTime = currentTime;
|
||
} catch (error) {
|
||
console.error(`[${new Date().toLocaleTimeString()}] 实际发送串口命令失败: ${error.message}`);
|
||
showStatus(SERIAL_STATUS, 'error', `发送串口命令失败: ${error.message},正在断开串口。`);
|
||
disconnectSerial();
|
||
}
|
||
}
|
||
|
||
// ===================================
|
||
// Event Listeners
|
||
// ===================================
|
||
CONNECT_SERIAL_BTN.addEventListener('click', connectSerial);
|
||
DISCONNECT_SERIAL_BTN.addEventListener('click', disconnectSerial);
|
||
LOAD_MODEL_BTN.addEventListener('click', () => loadKNNModel(null, null)); // 手动加载时,不传 CDN URL
|
||
START_WEBCAM_BTN.addEventListener('click', startWebcam);
|
||
STOP_WEBCAM_BTN.addEventListener('click', stopWebcam);
|
||
|
||
// ===================================
|
||
// Initialization
|
||
// ===================================
|
||
document.addEventListener('DOMContentLoaded', () => {
|
||
checkWebSerialCompatibility(); // 检查 Web Serial API 兼容性
|
||
initModel(); // 加载 MobileNet 和 KNN 分类器实例,并尝试自动加载 KNN 模型
|
||
});
|